Long Liu, Yang Xiao, Yanyan Jia, Ziyi Shao, Jingfei Shi, Chao Cui
{"title":"从C481抵抗逃避到血小板保存:利扎布替尼重新定义ITP靶向治疗。","authors":"Long Liu, Yang Xiao, Yanyan Jia, Ziyi Shao, Jingfei Shi, Chao Cui","doi":"10.2147/DDDT.S543620","DOIUrl":null,"url":null,"abstract":"<p><p>Immune thrombocytopenia (ITP), as an autoimmune disease, has various limitations in traditional treatments, and there is a lack of safe and durable targeted therapeutic regimens for refractory patients. Traditional covalent Bruton's tyrosine kinase (BTK) inhibitors are difficult to apply in ITP treatment due to issues such as drug resistance and bleeding risks. As a reversible covalent BTK inhibitor, rilzabrutinib has dual advantages in its molecular design: in terms of evading C481 resistance, it targets the ATP-binding domain of BTK through a non-covalent bond-dominated mode, and maintains highly efficient inhibitory activity in the BTK C481S mutant cell model (with an in vitro IC50 of 1.2 nM), showing significant advantages over traditional covalent inhibitors (eg, ibrutinib, whose IC50 increases to 1 μM); in terms of platelet function protection, in vivo mouse experiments have confirmed that it can reduce venous thrombosis, block the BTK pathway to decrease autoantibody-mediated platelet destruction, and retain the functions of pathways such as G protein-coupled receptors, achieving a balance between abnormal immune suppression and platelet hemostatic function through \"on-demand inhibition\". Preclinical studies have shown that its binding to human blood BTK is time- and concentration-dependent, and the inhibition of the BTK pathway in B cells and basophils is closely related to the degree of binding, with moderate kinase selectivity. Clinical studies have confirmed that the drug can take effect quickly, with 43% of patients achieving a platelet count ≥50×10<sup>9</sup>/L after 12 weeks of treatment, and the incidence of bleeding events is low. This article systematically analyzes the value of rilzabrutinib from molecular design to clinical translation, and elaborates on its mechanism of overcoming drug resistance and its synergistic regulatory effect on the B cell-macrophage-platelet pathological network. At present, its rapid onset, high safety, and effectiveness in refractory cases have been preliminarily verified, but long-term data from Phase III clinical trials are still needed to support its use as a first-line treatment. It provides a new therapeutic hope for patients with refractory ITP and also offers a paradigmatic reference for the development of kinase inhibitors for autoimmune diseases.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"8161-8180"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435525/pdf/","citationCount":"0","resultStr":"{\"title\":\"From C481 Resistance Evasion to Platelet Preservation: Rilzabrutinib Redefines ITP Targeted Therapy.\",\"authors\":\"Long Liu, Yang Xiao, Yanyan Jia, Ziyi Shao, Jingfei Shi, Chao Cui\",\"doi\":\"10.2147/DDDT.S543620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune thrombocytopenia (ITP), as an autoimmune disease, has various limitations in traditional treatments, and there is a lack of safe and durable targeted therapeutic regimens for refractory patients. Traditional covalent Bruton's tyrosine kinase (BTK) inhibitors are difficult to apply in ITP treatment due to issues such as drug resistance and bleeding risks. As a reversible covalent BTK inhibitor, rilzabrutinib has dual advantages in its molecular design: in terms of evading C481 resistance, it targets the ATP-binding domain of BTK through a non-covalent bond-dominated mode, and maintains highly efficient inhibitory activity in the BTK C481S mutant cell model (with an in vitro IC50 of 1.2 nM), showing significant advantages over traditional covalent inhibitors (eg, ibrutinib, whose IC50 increases to 1 μM); in terms of platelet function protection, in vivo mouse experiments have confirmed that it can reduce venous thrombosis, block the BTK pathway to decrease autoantibody-mediated platelet destruction, and retain the functions of pathways such as G protein-coupled receptors, achieving a balance between abnormal immune suppression and platelet hemostatic function through \\\"on-demand inhibition\\\". Preclinical studies have shown that its binding to human blood BTK is time- and concentration-dependent, and the inhibition of the BTK pathway in B cells and basophils is closely related to the degree of binding, with moderate kinase selectivity. Clinical studies have confirmed that the drug can take effect quickly, with 43% of patients achieving a platelet count ≥50×10<sup>9</sup>/L after 12 weeks of treatment, and the incidence of bleeding events is low. This article systematically analyzes the value of rilzabrutinib from molecular design to clinical translation, and elaborates on its mechanism of overcoming drug resistance and its synergistic regulatory effect on the B cell-macrophage-platelet pathological network. At present, its rapid onset, high safety, and effectiveness in refractory cases have been preliminarily verified, but long-term data from Phase III clinical trials are still needed to support its use as a first-line treatment. It provides a new therapeutic hope for patients with refractory ITP and also offers a paradigmatic reference for the development of kinase inhibitors for autoimmune diseases.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"19 \",\"pages\":\"8161-8180\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435525/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S543620\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S543620","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
From C481 Resistance Evasion to Platelet Preservation: Rilzabrutinib Redefines ITP Targeted Therapy.
Immune thrombocytopenia (ITP), as an autoimmune disease, has various limitations in traditional treatments, and there is a lack of safe and durable targeted therapeutic regimens for refractory patients. Traditional covalent Bruton's tyrosine kinase (BTK) inhibitors are difficult to apply in ITP treatment due to issues such as drug resistance and bleeding risks. As a reversible covalent BTK inhibitor, rilzabrutinib has dual advantages in its molecular design: in terms of evading C481 resistance, it targets the ATP-binding domain of BTK through a non-covalent bond-dominated mode, and maintains highly efficient inhibitory activity in the BTK C481S mutant cell model (with an in vitro IC50 of 1.2 nM), showing significant advantages over traditional covalent inhibitors (eg, ibrutinib, whose IC50 increases to 1 μM); in terms of platelet function protection, in vivo mouse experiments have confirmed that it can reduce venous thrombosis, block the BTK pathway to decrease autoantibody-mediated platelet destruction, and retain the functions of pathways such as G protein-coupled receptors, achieving a balance between abnormal immune suppression and platelet hemostatic function through "on-demand inhibition". Preclinical studies have shown that its binding to human blood BTK is time- and concentration-dependent, and the inhibition of the BTK pathway in B cells and basophils is closely related to the degree of binding, with moderate kinase selectivity. Clinical studies have confirmed that the drug can take effect quickly, with 43% of patients achieving a platelet count ≥50×109/L after 12 weeks of treatment, and the incidence of bleeding events is low. This article systematically analyzes the value of rilzabrutinib from molecular design to clinical translation, and elaborates on its mechanism of overcoming drug resistance and its synergistic regulatory effect on the B cell-macrophage-platelet pathological network. At present, its rapid onset, high safety, and effectiveness in refractory cases have been preliminarily verified, but long-term data from Phase III clinical trials are still needed to support its use as a first-line treatment. It provides a new therapeutic hope for patients with refractory ITP and also offers a paradigmatic reference for the development of kinase inhibitors for autoimmune diseases.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.