疤痕医学预测精度综述:从分子预测器到机器学习模型。

IF 2.2 4区 医学 Q3 DERMATOLOGY
Clinical, Cosmetic and Investigational Dermatology Pub Date : 2025-09-11 eCollection Date: 2025-01-01 DOI:10.2147/CCID.S542866
Jinzhao Su, Jingbin Chen, Tianrong Wang, Tiansheng Lin
{"title":"疤痕医学预测精度综述:从分子预测器到机器学习模型。","authors":"Jinzhao Su, Jingbin Chen, Tianrong Wang, Tiansheng Lin","doi":"10.2147/CCID.S542866","DOIUrl":null,"url":null,"abstract":"<p><p>Scars-including keloids, hypertrophic scars, and acne scars-pose substantial functional and psychosocial burdens that current empirical treatments often address by trial-and-error. Quantitative evidence now supports a precision framework. Validated clinical tools (eg, VSS, POSAS) and imaging modalities (3D photogrammetry; high-frequency ultrasound elastography) provide objective baselines, while emerging AI models deliver measurable gains: an automated scar-type classifier achieved precision 80.7%, recall 71.0%, AUC 0.846 for image-based categorization, and a clinical recurrence model for keloids reported AUC 0.889 with sensitivity 78.7% and specificity 86.8%, enabling earlier risk-stratified interventions and fewer ineffective treatment cycles in model-informed pathways. We synthesize cytokine/fibroblast signatures and genetic predisposition with multimodal (clinical-imaging-molecular) learning, detail validation challenges, and propose actionable safeguards (TRIPOD+AI-aligned reporting, internal-external validation, bias audits, SHAP-based interpretability, and federated learning to preserve privacy and improve generalizability). A pragmatic roadmap-including funding mechanisms, stakeholder roles, and a barrier-solution matrix-aims to accelerate translation toward predictive, preventive, and personalized scar care.</p>","PeriodicalId":10447,"journal":{"name":"Clinical, Cosmetic and Investigational Dermatology","volume":"18 ","pages":"2303-2314"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435524/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review of Predictive Precision in Scar Medicine: From Molecular Predictors to Machine Learning Models.\",\"authors\":\"Jinzhao Su, Jingbin Chen, Tianrong Wang, Tiansheng Lin\",\"doi\":\"10.2147/CCID.S542866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scars-including keloids, hypertrophic scars, and acne scars-pose substantial functional and psychosocial burdens that current empirical treatments often address by trial-and-error. Quantitative evidence now supports a precision framework. Validated clinical tools (eg, VSS, POSAS) and imaging modalities (3D photogrammetry; high-frequency ultrasound elastography) provide objective baselines, while emerging AI models deliver measurable gains: an automated scar-type classifier achieved precision 80.7%, recall 71.0%, AUC 0.846 for image-based categorization, and a clinical recurrence model for keloids reported AUC 0.889 with sensitivity 78.7% and specificity 86.8%, enabling earlier risk-stratified interventions and fewer ineffective treatment cycles in model-informed pathways. We synthesize cytokine/fibroblast signatures and genetic predisposition with multimodal (clinical-imaging-molecular) learning, detail validation challenges, and propose actionable safeguards (TRIPOD+AI-aligned reporting, internal-external validation, bias audits, SHAP-based interpretability, and federated learning to preserve privacy and improve generalizability). A pragmatic roadmap-including funding mechanisms, stakeholder roles, and a barrier-solution matrix-aims to accelerate translation toward predictive, preventive, and personalized scar care.</p>\",\"PeriodicalId\":10447,\"journal\":{\"name\":\"Clinical, Cosmetic and Investigational Dermatology\",\"volume\":\"18 \",\"pages\":\"2303-2314\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435524/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical, Cosmetic and Investigational Dermatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/CCID.S542866\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical, Cosmetic and Investigational Dermatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/CCID.S542866","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

疤痕——包括瘢痕疙瘩、增生性疤痕和痤疮疤痕——造成了实质性的功能和心理负担,目前的经验治疗通常通过反复试验来解决。定量证据现在支持一个精确的框架。经过验证的临床工具(如VSS, POSAS)和成像方式(3D摄影测量;高频超声弹性成像)提供了客观的基线,而新兴的人工智能模型提供了可测量的收益:自动疤痕型分类器的准确率为80.7%,召回率为71.0%,基于图像的分类的AUC为0.846,瘢痕瘤的临床复发模型的AUC为0.889,灵敏度为78.7%,特异性为86.8%,在模型信息通路中实现了更早的风险分层干预和更少的无效治疗周期。我们通过多模式(临床-成像-分子)学习,详细验证挑战,合成细胞因子/成纤维细胞特征和遗传易感性,并提出可操作的保障措施(TRIPOD+ ai校准报告,内部-外部验证,偏见审计,基于shap的可解释性,以及联邦学习以保护隐私和提高普遍性)。务实的路线图——包括资金机制、利益相关者角色和障碍解决矩阵——旨在加速向预测性、预防性和个性化疤痕护理的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Comprehensive Review of Predictive Precision in Scar Medicine: From Molecular Predictors to Machine Learning Models.

A Comprehensive Review of Predictive Precision in Scar Medicine: From Molecular Predictors to Machine Learning Models.

A Comprehensive Review of Predictive Precision in Scar Medicine: From Molecular Predictors to Machine Learning Models.

A Comprehensive Review of Predictive Precision in Scar Medicine: From Molecular Predictors to Machine Learning Models.

Scars-including keloids, hypertrophic scars, and acne scars-pose substantial functional and psychosocial burdens that current empirical treatments often address by trial-and-error. Quantitative evidence now supports a precision framework. Validated clinical tools (eg, VSS, POSAS) and imaging modalities (3D photogrammetry; high-frequency ultrasound elastography) provide objective baselines, while emerging AI models deliver measurable gains: an automated scar-type classifier achieved precision 80.7%, recall 71.0%, AUC 0.846 for image-based categorization, and a clinical recurrence model for keloids reported AUC 0.889 with sensitivity 78.7% and specificity 86.8%, enabling earlier risk-stratified interventions and fewer ineffective treatment cycles in model-informed pathways. We synthesize cytokine/fibroblast signatures and genetic predisposition with multimodal (clinical-imaging-molecular) learning, detail validation challenges, and propose actionable safeguards (TRIPOD+AI-aligned reporting, internal-external validation, bias audits, SHAP-based interpretability, and federated learning to preserve privacy and improve generalizability). A pragmatic roadmap-including funding mechanisms, stakeholder roles, and a barrier-solution matrix-aims to accelerate translation toward predictive, preventive, and personalized scar care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
4.30%
发文量
353
审稿时长
16 weeks
期刊介绍: Clinical, Cosmetic and Investigational Dermatology is an international, peer-reviewed, open access journal that focuses on the latest clinical and experimental research in all aspects of skin disease and cosmetic interventions. Normal and pathological processes in skin development and aging, their modification and treatment, as well as basic research into histology of dermal and dermal structures that provide clinical insights and potential treatment options are key topics for the journal. Patient satisfaction, preference, quality of life, compliance, persistence and their role in developing new management options to optimize outcomes for target conditions constitute major areas of interest. The journal is characterized by the rapid reporting of clinical studies, reviews and original research in skin research and skin care. All areas of dermatology will be covered; contributions will be welcomed from all clinicians and basic science researchers globally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信