{"title":"在无溶剂Knoevenagel反应中提高胺基MOF催化剂效率的系统孔脂化。","authors":"Pricilla Matseketsa, Margret Kumbirayi Ruwimbo Pagare, Tendai Gadzikwa","doi":"10.3762/bjoc.21.144","DOIUrl":null,"url":null,"abstract":"<p><p>We systematically lipophilized an amine-based metal-organic framework (MOF) catalyst and applied the functionalized MOFs to the Knoevenagel condensation reaction. A well-defined MOF material composed of both amine- and hydroxy-bearing linkers was reacted with a series of aliphatic isocyanates (isopropyl, <i>tert</i>-butyl, <i>n</i>-hexyl, and tetradecyl) and, incongruously, was found to preferentially react at the hydroxy groups. This selective functionalization yielded MOFs in which the catalytically active amines are confined within highly lipophilic pores, reminiscent of many enzyme active sites. We determined that systematically increasing the lipophilicity of the pores results in a commensurate increase of catalyst efficiency.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"21 ","pages":"1854-1863"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12434926/pdf/","citationCount":"0","resultStr":"{\"title\":\"Systematic pore lipophilization to enhance the efficiency of an amine-based MOF catalyst in the solvent-free Knoevenagel reaction.\",\"authors\":\"Pricilla Matseketsa, Margret Kumbirayi Ruwimbo Pagare, Tendai Gadzikwa\",\"doi\":\"10.3762/bjoc.21.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We systematically lipophilized an amine-based metal-organic framework (MOF) catalyst and applied the functionalized MOFs to the Knoevenagel condensation reaction. A well-defined MOF material composed of both amine- and hydroxy-bearing linkers was reacted with a series of aliphatic isocyanates (isopropyl, <i>tert</i>-butyl, <i>n</i>-hexyl, and tetradecyl) and, incongruously, was found to preferentially react at the hydroxy groups. This selective functionalization yielded MOFs in which the catalytically active amines are confined within highly lipophilic pores, reminiscent of many enzyme active sites. We determined that systematically increasing the lipophilicity of the pores results in a commensurate increase of catalyst efficiency.</p>\",\"PeriodicalId\":8756,\"journal\":{\"name\":\"Beilstein Journal of Organic Chemistry\",\"volume\":\"21 \",\"pages\":\"1854-1863\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12434926/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3762/bjoc.21.144\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.21.144","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Systematic pore lipophilization to enhance the efficiency of an amine-based MOF catalyst in the solvent-free Knoevenagel reaction.
We systematically lipophilized an amine-based metal-organic framework (MOF) catalyst and applied the functionalized MOFs to the Knoevenagel condensation reaction. A well-defined MOF material composed of both amine- and hydroxy-bearing linkers was reacted with a series of aliphatic isocyanates (isopropyl, tert-butyl, n-hexyl, and tetradecyl) and, incongruously, was found to preferentially react at the hydroxy groups. This selective functionalization yielded MOFs in which the catalytically active amines are confined within highly lipophilic pores, reminiscent of many enzyme active sites. We determined that systematically increasing the lipophilicity of the pores results in a commensurate increase of catalyst efficiency.
期刊介绍:
The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry.
The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.