筛查AI评分高但筛查结果为真阴性的乳房x线片的乳房x线片特征。

IF 1.1 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Henrik Wethe Koch, Marie Burns Bergan, Jonas Gjesvik, Marthe Larsen, Hauke Bartsch, Ingfrid Helene Salvesen Haldorsen, Solveig Hofvind
{"title":"筛查AI评分高但筛查结果为真阴性的乳房x线片的乳房x线片特征。","authors":"Henrik Wethe Koch, Marie Burns Bergan, Jonas Gjesvik, Marthe Larsen, Hauke Bartsch, Ingfrid Helene Salvesen Haldorsen, Solveig Hofvind","doi":"10.1177/02841851251363697","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundThe use of artificial intelligence (AI) in screen-reading of mammograms has shown promising results for cancer detection. However, less attention has been paid to the false positives generated by AI.PurposeTo investigate mammographic features in screening mammograms with high AI scores but a true-negative screening result.Material and MethodsIn this retrospective study, 54,662 screening examinations from BreastScreen Norway 2010-2022 were analyzed with a commercially available AI system (Transpara v. 2.0.0). An AI score of 1-10 indicated the suspiciousness of malignancy. We selected examinations with an AI score of 10, with a true-negative screening result, followed by two consecutive true-negative screening examinations. Of the 2,124 examinations matching these criteria, 382 random examinations underwent blinded consensus review by three experienced breast radiologists. The examinations were classified according to mammographic features, radiologist interpretation score (1-5), and mammographic breast density (BI-RADS 5th ed. a-d).ResultsThe reviews classified 91.1% (348/382) of the examinations as negative (interpretation score 1). All examinations (26/26) categorized as BI-RADS d were given an interpretation score of 1. Classification of mammographic features: asymmetry = 30.6% (117/382); calcifications = 30.1% (115/382); asymmetry with calcifications = 29.3% (112/382); mass = 8.9% (34/382); distortion = 0.8% (3/382); spiculated mass = 0.3% (1/382). For examinations with calcifications, 79.1% (91/115) were classified with benign morphology.ConclusionThe majority of false-positive screening examinations generated by AI were classified as non-suspicious in a retrospective blinded consensus review and would likely not have been recalled for further assessment in a real screening setting using AI as a decision support.</p>","PeriodicalId":7143,"journal":{"name":"Acta radiologica","volume":" ","pages":"2841851251363697"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mammographic features in screening mammograms with high AI scores but a true-negative screening result.\",\"authors\":\"Henrik Wethe Koch, Marie Burns Bergan, Jonas Gjesvik, Marthe Larsen, Hauke Bartsch, Ingfrid Helene Salvesen Haldorsen, Solveig Hofvind\",\"doi\":\"10.1177/02841851251363697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundThe use of artificial intelligence (AI) in screen-reading of mammograms has shown promising results for cancer detection. However, less attention has been paid to the false positives generated by AI.PurposeTo investigate mammographic features in screening mammograms with high AI scores but a true-negative screening result.Material and MethodsIn this retrospective study, 54,662 screening examinations from BreastScreen Norway 2010-2022 were analyzed with a commercially available AI system (Transpara v. 2.0.0). An AI score of 1-10 indicated the suspiciousness of malignancy. We selected examinations with an AI score of 10, with a true-negative screening result, followed by two consecutive true-negative screening examinations. Of the 2,124 examinations matching these criteria, 382 random examinations underwent blinded consensus review by three experienced breast radiologists. The examinations were classified according to mammographic features, radiologist interpretation score (1-5), and mammographic breast density (BI-RADS 5th ed. a-d).ResultsThe reviews classified 91.1% (348/382) of the examinations as negative (interpretation score 1). All examinations (26/26) categorized as BI-RADS d were given an interpretation score of 1. Classification of mammographic features: asymmetry = 30.6% (117/382); calcifications = 30.1% (115/382); asymmetry with calcifications = 29.3% (112/382); mass = 8.9% (34/382); distortion = 0.8% (3/382); spiculated mass = 0.3% (1/382). For examinations with calcifications, 79.1% (91/115) were classified with benign morphology.ConclusionThe majority of false-positive screening examinations generated by AI were classified as non-suspicious in a retrospective blinded consensus review and would likely not have been recalled for further assessment in a real screening setting using AI as a decision support.</p>\",\"PeriodicalId\":7143,\"journal\":{\"name\":\"Acta radiologica\",\"volume\":\" \",\"pages\":\"2841851251363697\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta radiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/02841851251363697\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta radiologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/02841851251363697","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)在乳房x光片屏幕阅读中的应用在癌症检测方面显示出了令人鼓舞的结果。然而,人工智能产生的误报却很少受到关注。目的探讨人工智能(AI)评分高但筛查结果为真阴性的乳房x线照片的影像学特征。材料和方法在这项回顾性研究中,使用市售AI系统(Transpara v. 2.0.0)分析了2010-2022年来自挪威BreastScreen的54,662例筛查检查。人工智能(AI)得分在1-10分之间,表示怀疑为恶性肿瘤。我们选择AI评分为10分的检查,筛选结果为真阴性,然后连续两次进行真阴性筛选检查。在符合这些标准的2,124次检查中,382次随机检查由三名经验丰富的乳腺放射科医生进行了盲法一致审查。检查根据乳房x线摄影特征、放射科医生解释评分(1-5)和乳房x线摄影密度(BI-RADS第5版a-d)进行分类。结果91.1%(348/382)的评价为阴性(口译分1分)。所有被归类为BI-RADS d的考试(26/26)的解释评分为1分。乳房x线特征分类:不对称= 30.6% (117/382);钙化= 30.1% (115/382);不对称伴钙化= 29.3% (112/382);质量= 8.9% (34/382);失真= 0.8% (3/382);毛刺质量= 0.3%(1/382)。在钙化检查中,79.1%(91/115)为良性形态。在一项回顾性盲法共识评价中,人工智能产生的大多数假阳性筛查检查被归类为非可疑,在使用人工智能作为决策支持的真实筛查环境中,可能不会被召回进行进一步评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mammographic features in screening mammograms with high AI scores but a true-negative screening result.

BackgroundThe use of artificial intelligence (AI) in screen-reading of mammograms has shown promising results for cancer detection. However, less attention has been paid to the false positives generated by AI.PurposeTo investigate mammographic features in screening mammograms with high AI scores but a true-negative screening result.Material and MethodsIn this retrospective study, 54,662 screening examinations from BreastScreen Norway 2010-2022 were analyzed with a commercially available AI system (Transpara v. 2.0.0). An AI score of 1-10 indicated the suspiciousness of malignancy. We selected examinations with an AI score of 10, with a true-negative screening result, followed by two consecutive true-negative screening examinations. Of the 2,124 examinations matching these criteria, 382 random examinations underwent blinded consensus review by three experienced breast radiologists. The examinations were classified according to mammographic features, radiologist interpretation score (1-5), and mammographic breast density (BI-RADS 5th ed. a-d).ResultsThe reviews classified 91.1% (348/382) of the examinations as negative (interpretation score 1). All examinations (26/26) categorized as BI-RADS d were given an interpretation score of 1. Classification of mammographic features: asymmetry = 30.6% (117/382); calcifications = 30.1% (115/382); asymmetry with calcifications = 29.3% (112/382); mass = 8.9% (34/382); distortion = 0.8% (3/382); spiculated mass = 0.3% (1/382). For examinations with calcifications, 79.1% (91/115) were classified with benign morphology.ConclusionThe majority of false-positive screening examinations generated by AI were classified as non-suspicious in a retrospective blinded consensus review and would likely not have been recalled for further assessment in a real screening setting using AI as a decision support.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta radiologica
Acta radiologica 医学-核医学
CiteScore
2.70
自引率
0.00%
发文量
170
审稿时长
3-8 weeks
期刊介绍: Acta Radiologica publishes articles on all aspects of radiology, from clinical radiology to experimental work. It is known for articles based on experimental work and contrast media research, giving priority to scientific original papers. The distinguished international editorial board also invite review articles, short communications and technical and instrumental notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信