利用eCPMG实验分析亚毫秒时间尺度蛋白质动力学。

IF 1.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Apurva Phale, Aishani Tewari, Gayatri Tendulkar, Ranabir Das, Sivakumar Srinivasan, Kalyan S Chakrabarti
{"title":"利用eCPMG实验分析亚毫秒时间尺度蛋白质动力学。","authors":"Apurva Phale, Aishani Tewari, Gayatri Tendulkar, Ranabir Das, Sivakumar Srinivasan, Kalyan S Chakrabarti","doi":"10.1007/s10858-025-00475-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular functions require biomolecules to transition among various conformational sub-states in the energy landscape. A mechanistic understanding of cellular functions requires quantitative knowledge of the kinetics, thermodynamics, and structural features of the biomolecules experiencing exchange between several states. High-power Relaxation Dispersion (RD) NMR experiments have proven very effective for such measurements if the exchange occurs in timescales ranging from microseconds to milliseconds. However, scanning the significantly larger kinetic window within the time limit of instrumental availability and sample stability requires careful optimization of experiments. Understanding biomolecular functions at a mechanistic level depends on fitting such experimental data to theoretical models. However, the reliability of the fit parameters depends on the measurement schemes and is sensitive to experimental noise. Here, we benchmark different measurement schemes along with theoretical models for sub-millisecond timescale exchange and determine the robustness of these models in providing information when the measurements contain noise. Our results show that kinetics can be measured reliably from such experiments. The structural features of the exchanging sub-states, encoded in the chemical shift differences between the states, can be fitted, albeit with significant uncertainties. Information about the minor states is difficult to obtain exclusively from the RD data due to large uncertainties and sensitivity to noise.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing sub-millisecond timescale protein dynamics using eCPMG experiments.\",\"authors\":\"Apurva Phale, Aishani Tewari, Gayatri Tendulkar, Ranabir Das, Sivakumar Srinivasan, Kalyan S Chakrabarti\",\"doi\":\"10.1007/s10858-025-00475-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular functions require biomolecules to transition among various conformational sub-states in the energy landscape. A mechanistic understanding of cellular functions requires quantitative knowledge of the kinetics, thermodynamics, and structural features of the biomolecules experiencing exchange between several states. High-power Relaxation Dispersion (RD) NMR experiments have proven very effective for such measurements if the exchange occurs in timescales ranging from microseconds to milliseconds. However, scanning the significantly larger kinetic window within the time limit of instrumental availability and sample stability requires careful optimization of experiments. Understanding biomolecular functions at a mechanistic level depends on fitting such experimental data to theoretical models. However, the reliability of the fit parameters depends on the measurement schemes and is sensitive to experimental noise. Here, we benchmark different measurement schemes along with theoretical models for sub-millisecond timescale exchange and determine the robustness of these models in providing information when the measurements contain noise. Our results show that kinetics can be measured reliably from such experiments. The structural features of the exchanging sub-states, encoded in the chemical shift differences between the states, can be fitted, albeit with significant uncertainties. Information about the minor states is difficult to obtain exclusively from the RD data due to large uncertainties and sensitivity to noise.</p>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10858-025-00475-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-025-00475-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞功能需要生物分子在能量景观中的各种构象亚态之间转换。对细胞功能的机械理解需要对动力学、热力学和生物分子在几个状态之间进行交换的结构特征有定量的了解。如果交换发生在微秒到毫秒的时间尺度上,高功率弛豫色散(RD)核磁共振实验已经证明对这种测量是非常有效的。然而,在仪器可用性和样品稳定性的时间限制内扫描更大的动力学窗口需要仔细优化实验。在机制水平上理解生物分子的功能取决于将这些实验数据拟合到理论模型中。然而,拟合参数的可靠性取决于测量方案,并且对实验噪声很敏感。在这里,我们对不同的测量方案以及亚毫秒时间尺度交换的理论模型进行了基准测试,并确定了这些模型在测量包含噪声时提供信息的鲁棒性。我们的结果表明,通过这样的实验可以可靠地测量动力学。交换子态的结构特征,编码在状态之间的化学位移差异中,可以被拟合,尽管有很大的不确定性。由于大的不确定性和对噪声的敏感性,很难从RD数据中获得关于次要状态的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing sub-millisecond timescale protein dynamics using eCPMG experiments.

Cellular functions require biomolecules to transition among various conformational sub-states in the energy landscape. A mechanistic understanding of cellular functions requires quantitative knowledge of the kinetics, thermodynamics, and structural features of the biomolecules experiencing exchange between several states. High-power Relaxation Dispersion (RD) NMR experiments have proven very effective for such measurements if the exchange occurs in timescales ranging from microseconds to milliseconds. However, scanning the significantly larger kinetic window within the time limit of instrumental availability and sample stability requires careful optimization of experiments. Understanding biomolecular functions at a mechanistic level depends on fitting such experimental data to theoretical models. However, the reliability of the fit parameters depends on the measurement schemes and is sensitive to experimental noise. Here, we benchmark different measurement schemes along with theoretical models for sub-millisecond timescale exchange and determine the robustness of these models in providing information when the measurements contain noise. Our results show that kinetics can be measured reliably from such experiments. The structural features of the exchanging sub-states, encoded in the chemical shift differences between the states, can be fitted, albeit with significant uncertainties. Information about the minor states is difficult to obtain exclusively from the RD data due to large uncertainties and sensitivity to noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular NMR
Journal of Biomolecular NMR 生物-光谱学
CiteScore
6.00
自引率
3.70%
发文量
19
审稿时长
6-12 weeks
期刊介绍: The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include: Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR. New NMR techniques for studies of biological macromolecules. Novel approaches to computer-aided automated analysis of multidimensional NMR spectra. Computational methods for the structural interpretation of NMR data, including structure refinement. Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals. New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信