Liana Zaroubi, , , Bruno S. Paulo, , , Ethan Fung, , , Hannah Cavanagh, , , Robert Britton, , , Alessandra S. Eustaquio, , and , Roger G. Linington*,
{"title":"利用平行稳定同位素标记表征化学激发下天然产物生产的变化。","authors":"Liana Zaroubi, , , Bruno S. Paulo, , , Ethan Fung, , , Hannah Cavanagh, , , Robert Britton, , , Alessandra S. Eustaquio, , and , Roger G. Linington*, ","doi":"10.1021/acschembio.5c00346","DOIUrl":null,"url":null,"abstract":"<p >Most microorganisms produce far fewer secondary metabolites under laboratory culture conditions than would be expected based on the number of biosynthetic gene clusters (BGCs) present in their genomes. One strategy for inducing secondary metabolite production is to add chemical elicitors that disrupt bacterial metabolism. This one-strain-many-compounds (OSMAC) strategy has been used successfully to discover a broad range of natural products. However, traditional strategies for detecting changes in natural product production are not well suited to characterizing variations in the full secondary metabolome under elicitation conditions. One efficient tool to differentiate metabolites between experiments is IsoAnalyst, a parallel stable isotope labeling method that connects secondary metabolites to BGCs by determining the rates of incorporation for a set of isotopically labeled secondary metabolism building blocks. In this study three strains of <i>Paraburkholderia</i> were profiled under a range of OSMAC conditions and changes in secondary metabolism characterized using a combination of analytical tools including IsoAnalyst. Using these profiles, we assessed the degree of novel secondary metabolite production under different elicitation conditions. Prioritization of one compound class strongly induced in the presence of the antibiotic rifaximin led to the discovery of 2-hydroxyacyl putrescine compounds putrescinamides A (<b>1</b>) and B (<b>2</b>). The structures of these new metabolites were determined through a combination of multidimensional NMR experiments and total synthesis, which permitted the determination of their full absolute configurations. Together these stable isotope labeling experiments provide a unique perspective on system-wide variation in de novo secondary metabolite biosynthesis under elicitor conditions and highlight the impact of elicitor selection on metabolite induction in Burkholderiales strains.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"20 10","pages":"2393–2403"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Variation in Natural Product Production Under Chemical Elicitation Using Parallel Stable Isotope Labeling\",\"authors\":\"Liana Zaroubi, , , Bruno S. Paulo, , , Ethan Fung, , , Hannah Cavanagh, , , Robert Britton, , , Alessandra S. Eustaquio, , and , Roger G. Linington*, \",\"doi\":\"10.1021/acschembio.5c00346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Most microorganisms produce far fewer secondary metabolites under laboratory culture conditions than would be expected based on the number of biosynthetic gene clusters (BGCs) present in their genomes. One strategy for inducing secondary metabolite production is to add chemical elicitors that disrupt bacterial metabolism. This one-strain-many-compounds (OSMAC) strategy has been used successfully to discover a broad range of natural products. However, traditional strategies for detecting changes in natural product production are not well suited to characterizing variations in the full secondary metabolome under elicitation conditions. One efficient tool to differentiate metabolites between experiments is IsoAnalyst, a parallel stable isotope labeling method that connects secondary metabolites to BGCs by determining the rates of incorporation for a set of isotopically labeled secondary metabolism building blocks. In this study three strains of <i>Paraburkholderia</i> were profiled under a range of OSMAC conditions and changes in secondary metabolism characterized using a combination of analytical tools including IsoAnalyst. Using these profiles, we assessed the degree of novel secondary metabolite production under different elicitation conditions. Prioritization of one compound class strongly induced in the presence of the antibiotic rifaximin led to the discovery of 2-hydroxyacyl putrescine compounds putrescinamides A (<b>1</b>) and B (<b>2</b>). The structures of these new metabolites were determined through a combination of multidimensional NMR experiments and total synthesis, which permitted the determination of their full absolute configurations. Together these stable isotope labeling experiments provide a unique perspective on system-wide variation in de novo secondary metabolite biosynthesis under elicitor conditions and highlight the impact of elicitor selection on metabolite induction in Burkholderiales strains.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\"20 10\",\"pages\":\"2393–2403\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acschembio.5c00346\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschembio.5c00346","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Characterization of Variation in Natural Product Production Under Chemical Elicitation Using Parallel Stable Isotope Labeling
Most microorganisms produce far fewer secondary metabolites under laboratory culture conditions than would be expected based on the number of biosynthetic gene clusters (BGCs) present in their genomes. One strategy for inducing secondary metabolite production is to add chemical elicitors that disrupt bacterial metabolism. This one-strain-many-compounds (OSMAC) strategy has been used successfully to discover a broad range of natural products. However, traditional strategies for detecting changes in natural product production are not well suited to characterizing variations in the full secondary metabolome under elicitation conditions. One efficient tool to differentiate metabolites between experiments is IsoAnalyst, a parallel stable isotope labeling method that connects secondary metabolites to BGCs by determining the rates of incorporation for a set of isotopically labeled secondary metabolism building blocks. In this study three strains of Paraburkholderia were profiled under a range of OSMAC conditions and changes in secondary metabolism characterized using a combination of analytical tools including IsoAnalyst. Using these profiles, we assessed the degree of novel secondary metabolite production under different elicitation conditions. Prioritization of one compound class strongly induced in the presence of the antibiotic rifaximin led to the discovery of 2-hydroxyacyl putrescine compounds putrescinamides A (1) and B (2). The structures of these new metabolites were determined through a combination of multidimensional NMR experiments and total synthesis, which permitted the determination of their full absolute configurations. Together these stable isotope labeling experiments provide a unique perspective on system-wide variation in de novo secondary metabolite biosynthesis under elicitor conditions and highlight the impact of elicitor selection on metabolite induction in Burkholderiales strains.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.