在Snyder-de Sitter代数框架下非相对论谐振子和受均匀磁场影响的Klein-Gordon振子的统一处理的超对称量子力学方法

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Abdelkader Saidani, Farid Benamira
{"title":"在Snyder-de Sitter代数框架下非相对论谐振子和受均匀磁场影响的Klein-Gordon振子的统一处理的超对称量子力学方法","authors":"Abdelkader Saidani,&nbsp;Farid Benamira","doi":"10.1007/s10773-025-06117-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, using the method of supersymmetric quantum mechanics (SUSY QM) and the concept of shape invariance, we determine the energy levels and wavefunctions for a two-dimensional Klein-Gordon oscillator (KGO) and a non-relativistic isotropic harmonic oscillator (NRHO) of a charged particle subject to a constant magnetic field within the framework of the Snyder-de Sitter (SdS) model. Both cases are solved simultaneously by introducing a Hamiltonian that depends on a real parameter, enabling an easy transition between the two cases. By transforming the corresponding equations into a position-dependent Schrödinger-like equation, the problem is solved exactly in position space. The wavefunctions are explicitly derived using recursion relations involving Jacobi polynomials.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 10","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supersymmetric Quantum Mechanics Approach to Unified Treatment of the Non-Relativistic Harmonic Oscillator and the Klein-Gordon Oscillator Subject to a Uniform Magnetic Field in the Framework of Snyder-de Sitter Algebra\",\"authors\":\"Abdelkader Saidani,&nbsp;Farid Benamira\",\"doi\":\"10.1007/s10773-025-06117-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, using the method of supersymmetric quantum mechanics (SUSY QM) and the concept of shape invariance, we determine the energy levels and wavefunctions for a two-dimensional Klein-Gordon oscillator (KGO) and a non-relativistic isotropic harmonic oscillator (NRHO) of a charged particle subject to a constant magnetic field within the framework of the Snyder-de Sitter (SdS) model. Both cases are solved simultaneously by introducing a Hamiltonian that depends on a real parameter, enabling an easy transition between the two cases. By transforming the corresponding equations into a position-dependent Schrödinger-like equation, the problem is solved exactly in position space. The wavefunctions are explicitly derived using recursion relations involving Jacobi polynomials.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 10\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-06117-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06117-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们利用超对称量子力学(SUSY QM)方法和形状不变性的概念,在Snyder-de Sitter (SdS)模型的框架内,确定了受恒定磁场作用的带电粒子的二维Klein-Gordon振子(KGO)和非相对论各向同性谐振子(NRHO)的能级和波函数。通过引入依赖于实参数的哈密顿量,可以同时解决这两种情况,从而实现两种情况之间的轻松转换。通过将相应方程转化为与位置相关的Schrödinger-like方程,在位置空间中精确求解问题。波函数是使用包含雅可比多项式的递推关系显式导出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supersymmetric Quantum Mechanics Approach to Unified Treatment of the Non-Relativistic Harmonic Oscillator and the Klein-Gordon Oscillator Subject to a Uniform Magnetic Field in the Framework of Snyder-de Sitter Algebra

In this work, using the method of supersymmetric quantum mechanics (SUSY QM) and the concept of shape invariance, we determine the energy levels and wavefunctions for a two-dimensional Klein-Gordon oscillator (KGO) and a non-relativistic isotropic harmonic oscillator (NRHO) of a charged particle subject to a constant magnetic field within the framework of the Snyder-de Sitter (SdS) model. Both cases are solved simultaneously by introducing a Hamiltonian that depends on a real parameter, enabling an easy transition between the two cases. By transforming the corresponding equations into a position-dependent Schrödinger-like equation, the problem is solved exactly in position space. The wavefunctions are explicitly derived using recursion relations involving Jacobi polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信