标量-爱因斯坦-高斯-博内四维引力模型中的广义Ellis-Bronnikov虫洞解

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
K. K. Ernazarov
{"title":"标量-爱因斯坦-高斯-博内四维引力模型中的广义Ellis-Bronnikov虫洞解","authors":"K. K. Ernazarov","doi":"10.1007/s10773-025-06139-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the sEGB 4<i>d</i> gravitational model with a scalar field <span>\\(\\varphi \\left( u\\right)\\)</span>, Einstein and Gauss-Bonnet terms. The model action contains a potential term <span>\\(U\\left( \\varphi \\right)\\)</span>, a Gauss-Bonnet coupling function <span>\\(f\\left( \\varphi \\right)\\)</span> and a parameter <span>\\(\\varepsilon = \\pm 1\\)</span>, where <span>\\(\\varepsilon = 1\\)</span> corresponds to the usual scalar field, and <span>\\(\\varepsilon = -1\\)</span> to the phantom field. In this paper, the sEGB reconstruction procedure considered in our previous paper is applied to the metric of the Ellis-Bronnikov solution, which describes a massive wormhole in the model with a phantom field (and zero potential). For this metric, written in the Buchdal parameterization with a radial variable <i>u</i>, we find a solution of the master equation for <span>\\(f\\left( \\varphi \\left( u\\right) \\right)\\)</span> with the integration (reconstruction) parameter <span>\\(C_0\\)</span>. We also find expressions for <span>\\(U\\left( \\varphi \\left( u\\right) \\right)\\)</span> and <span>\\(\\varepsilon \\dot{\\varphi }^2 = h\\left( u\\right)\\)</span> for <span>\\(\\varepsilon = \\pm 1\\)</span>. We prove that for all non-trivial values of the parameter <span>\\(C_0 \\ne 0\\)</span> the function <span>\\(h\\left( u\\right)\\)</span> is not of constant sign for all admissible <span>\\(u \\in \\left( -\\infty , +\\infty \\right)\\)</span>. This means that for a fixed value of the parameter <span>\\(\\varepsilon = \\pm 1\\)</span> there is no non-trivial sEGB reconstruction in which the scalar field is a purely ordinary field (<span>\\(\\varepsilon = 1\\)</span>) or a purely phantom field (<span>\\(\\varepsilon = - 1\\)</span>).</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 10","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Ellis-Bronnikov Wormhole Solution in the scalar-Einstein-Gauss-Bonnet 4d Gravitational Model\",\"authors\":\"K. K. Ernazarov\",\"doi\":\"10.1007/s10773-025-06139-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the sEGB 4<i>d</i> gravitational model with a scalar field <span>\\\\(\\\\varphi \\\\left( u\\\\right)\\\\)</span>, Einstein and Gauss-Bonnet terms. The model action contains a potential term <span>\\\\(U\\\\left( \\\\varphi \\\\right)\\\\)</span>, a Gauss-Bonnet coupling function <span>\\\\(f\\\\left( \\\\varphi \\\\right)\\\\)</span> and a parameter <span>\\\\(\\\\varepsilon = \\\\pm 1\\\\)</span>, where <span>\\\\(\\\\varepsilon = 1\\\\)</span> corresponds to the usual scalar field, and <span>\\\\(\\\\varepsilon = -1\\\\)</span> to the phantom field. In this paper, the sEGB reconstruction procedure considered in our previous paper is applied to the metric of the Ellis-Bronnikov solution, which describes a massive wormhole in the model with a phantom field (and zero potential). For this metric, written in the Buchdal parameterization with a radial variable <i>u</i>, we find a solution of the master equation for <span>\\\\(f\\\\left( \\\\varphi \\\\left( u\\\\right) \\\\right)\\\\)</span> with the integration (reconstruction) parameter <span>\\\\(C_0\\\\)</span>. We also find expressions for <span>\\\\(U\\\\left( \\\\varphi \\\\left( u\\\\right) \\\\right)\\\\)</span> and <span>\\\\(\\\\varepsilon \\\\dot{\\\\varphi }^2 = h\\\\left( u\\\\right)\\\\)</span> for <span>\\\\(\\\\varepsilon = \\\\pm 1\\\\)</span>. We prove that for all non-trivial values of the parameter <span>\\\\(C_0 \\\\ne 0\\\\)</span> the function <span>\\\\(h\\\\left( u\\\\right)\\\\)</span> is not of constant sign for all admissible <span>\\\\(u \\\\in \\\\left( -\\\\infty , +\\\\infty \\\\right)\\\\)</span>. This means that for a fixed value of the parameter <span>\\\\(\\\\varepsilon = \\\\pm 1\\\\)</span> there is no non-trivial sEGB reconstruction in which the scalar field is a purely ordinary field (<span>\\\\(\\\\varepsilon = 1\\\\)</span>) or a purely phantom field (<span>\\\\(\\\\varepsilon = - 1\\\\)</span>).</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 10\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-06139-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06139-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑带标量场的segb4d引力模型 \(\varphi \left( u\right)\),爱因斯坦和高斯-博内术语。模型动作包含一个潜在项 \(U\left( \varphi \right)\),高斯-邦纳耦合函数 \(f\left( \varphi \right)\) 还有一个参数 \(\varepsilon = \pm 1\),其中 \(\varepsilon = 1\) 对应于通常的标量场,和 \(\varepsilon = -1\) 去幻影场。在本文中,我们将之前论文中考虑的sEGB重建过程应用于Ellis-Bronnikov解的度量,该解描述了模型中具有幽灵场(和零电位)的大质量虫洞。对于这个度量,用径向变量u的Buchdal参数化表示,我们找到了主方程的解 \(f\left( \varphi \left( u\right) \right)\) 与积分(重建)参数 \(C_0\)。我们也会找到 \(U\left( \varphi \left( u\right) \right)\) 和 \(\varepsilon \dot{\varphi }^2 = h\left( u\right)\) 为了 \(\varepsilon = \pm 1\)。我们证明了对于参数的所有非平凡值 \(C_0 \ne 0\) 函数 \(h\left( u\right)\) 不是所有人都可以接受的恒号吗 \(u \in \left( -\infty , +\infty \right)\)。这意味着对于一个固定值的参数 \(\varepsilon = \pm 1\) 不存在标量场为纯普通场的非平凡sEGB重构(\(\varepsilon = 1\))或纯幻场(\(\varepsilon = - 1\)).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Ellis-Bronnikov Wormhole Solution in the scalar-Einstein-Gauss-Bonnet 4d Gravitational Model

We consider the sEGB 4d gravitational model with a scalar field \(\varphi \left( u\right)\), Einstein and Gauss-Bonnet terms. The model action contains a potential term \(U\left( \varphi \right)\), a Gauss-Bonnet coupling function \(f\left( \varphi \right)\) and a parameter \(\varepsilon = \pm 1\), where \(\varepsilon = 1\) corresponds to the usual scalar field, and \(\varepsilon = -1\) to the phantom field. In this paper, the sEGB reconstruction procedure considered in our previous paper is applied to the metric of the Ellis-Bronnikov solution, which describes a massive wormhole in the model with a phantom field (and zero potential). For this metric, written in the Buchdal parameterization with a radial variable u, we find a solution of the master equation for \(f\left( \varphi \left( u\right) \right)\) with the integration (reconstruction) parameter \(C_0\). We also find expressions for \(U\left( \varphi \left( u\right) \right)\) and \(\varepsilon \dot{\varphi }^2 = h\left( u\right)\) for \(\varepsilon = \pm 1\). We prove that for all non-trivial values of the parameter \(C_0 \ne 0\) the function \(h\left( u\right)\) is not of constant sign for all admissible \(u \in \left( -\infty , +\infty \right)\). This means that for a fixed value of the parameter \(\varepsilon = \pm 1\) there is no non-trivial sEGB reconstruction in which the scalar field is a purely ordinary field (\(\varepsilon = 1\)) or a purely phantom field (\(\varepsilon = - 1\)).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信