基于Zoom 2D-DIC系统和不完全二阶形状函数的疲劳裂纹变形场测量

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
J. Huang, X. Shao
{"title":"基于Zoom 2D-DIC系统和不完全二阶形状函数的疲劳裂纹变形场测量","authors":"J. Huang,&nbsp;X. Shao","doi":"10.1007/s40799-025-00791-8","DOIUrl":null,"url":null,"abstract":"<div><p>Fatigue damage represents a significant risk to the structural integrity of engineering components. However, current experiments on fatigue crack propagation struggle to fundamentally elucidate the mechanisms governing crack initiation and propagation. Based on the Digital Image Correlation (DIC) method, this article investigates techniques that effectively measure the displacement field at the fatigue crack tip. Methodologically, the traditional DIC displacement mode has been refined to introduce incomplete second-order displacement shape functions, findings indicate that a suitable incomplete second-order displacement function closely approximates the second-order shape function in terms of measurement accuracy, yielding an additional 12% improvement in measurement efficiency. Regarding instrumentation, the integration of an electrically tunable lens (ETL) into DIC is employed to establish a zoom Two-Dimensional Digital image correlation (2D-DIC) measurement system. This configuration effectively addresses the focusing challenge inherent in traditional small Field-of-View (FOV) 2D-DIC systems, facilitating efficient experimental measurements. Moreover, a speckle translation-based method is introduced for calibrating the distortion coefficients of zoom 2D-DIC, thereby alleviating the considerable calibration workload associated with ETL. Ultimately, the deformation field at the small-scale fatigue crack tip is measured to validate the practical utility of the developed measurement system and the effectiveness of the enhanced displacement shape functions.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"49 5","pages":"919 - 935"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue Crack Deformation Field Measurement Based on Zoom 2D-DIC System and Incomplete Second-Order Shape Functions\",\"authors\":\"J. Huang,&nbsp;X. Shao\",\"doi\":\"10.1007/s40799-025-00791-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fatigue damage represents a significant risk to the structural integrity of engineering components. However, current experiments on fatigue crack propagation struggle to fundamentally elucidate the mechanisms governing crack initiation and propagation. Based on the Digital Image Correlation (DIC) method, this article investigates techniques that effectively measure the displacement field at the fatigue crack tip. Methodologically, the traditional DIC displacement mode has been refined to introduce incomplete second-order displacement shape functions, findings indicate that a suitable incomplete second-order displacement function closely approximates the second-order shape function in terms of measurement accuracy, yielding an additional 12% improvement in measurement efficiency. Regarding instrumentation, the integration of an electrically tunable lens (ETL) into DIC is employed to establish a zoom Two-Dimensional Digital image correlation (2D-DIC) measurement system. This configuration effectively addresses the focusing challenge inherent in traditional small Field-of-View (FOV) 2D-DIC systems, facilitating efficient experimental measurements. Moreover, a speckle translation-based method is introduced for calibrating the distortion coefficients of zoom 2D-DIC, thereby alleviating the considerable calibration workload associated with ETL. Ultimately, the deformation field at the small-scale fatigue crack tip is measured to validate the practical utility of the developed measurement system and the effectiveness of the enhanced displacement shape functions.</p></div>\",\"PeriodicalId\":553,\"journal\":{\"name\":\"Experimental Techniques\",\"volume\":\"49 5\",\"pages\":\"919 - 935\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40799-025-00791-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-025-00791-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

疲劳损伤是影响工程构件结构完整性的重要因素。然而,目前的疲劳裂纹扩展实验还无法从根本上阐明裂纹萌生和扩展的机制。基于数字图像相关(DIC)方法,研究了疲劳裂纹尖端位移场的有效测量技术。在方法上,对传统的DIC位移模式进行了改进,引入了不完全二阶位移形状函数,研究结果表明,在测量精度方面,合适的不完全二阶位移函数与二阶形状函数非常接近,测量效率提高了12%。在仪器方面,将电可调透镜(ETL)集成到DIC中,建立了变焦二维数字图像相关(2D-DIC)测量系统。这种配置有效地解决了传统小视场2D-DIC系统固有的聚焦问题,促进了高效的实验测量。此外,本文还引入了一种基于散斑平移的变焦2D-DIC畸变系数校准方法,从而减轻了ETL相关的大量校准工作量。最后,对小尺度疲劳裂纹尖端的变形场进行了测量,验证了所开发的测量系统的实用性和增强位移形状函数的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue Crack Deformation Field Measurement Based on Zoom 2D-DIC System and Incomplete Second-Order Shape Functions

Fatigue damage represents a significant risk to the structural integrity of engineering components. However, current experiments on fatigue crack propagation struggle to fundamentally elucidate the mechanisms governing crack initiation and propagation. Based on the Digital Image Correlation (DIC) method, this article investigates techniques that effectively measure the displacement field at the fatigue crack tip. Methodologically, the traditional DIC displacement mode has been refined to introduce incomplete second-order displacement shape functions, findings indicate that a suitable incomplete second-order displacement function closely approximates the second-order shape function in terms of measurement accuracy, yielding an additional 12% improvement in measurement efficiency. Regarding instrumentation, the integration of an electrically tunable lens (ETL) into DIC is employed to establish a zoom Two-Dimensional Digital image correlation (2D-DIC) measurement system. This configuration effectively addresses the focusing challenge inherent in traditional small Field-of-View (FOV) 2D-DIC systems, facilitating efficient experimental measurements. Moreover, a speckle translation-based method is introduced for calibrating the distortion coefficients of zoom 2D-DIC, thereby alleviating the considerable calibration workload associated with ETL. Ultimately, the deformation field at the small-scale fatigue crack tip is measured to validate the practical utility of the developed measurement system and the effectiveness of the enhanced displacement shape functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Techniques
Experimental Techniques 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
88
审稿时长
5.2 months
期刊介绍: Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques. The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to: - Increase the knowledge of physical phenomena - Further the understanding of the behavior of materials, structures, and systems - Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信