Jacklyn A. DiPietro, Bellamarie Ludwig and Benjamin J. Lear
{"title":"聚二甲基硅氧烷的光热图像化","authors":"Jacklyn A. DiPietro, Bellamarie Ludwig and Benjamin J. Lear","doi":"10.1039/D5LP00093A","DOIUrl":null,"url":null,"abstract":"<p >The surface patterning of polymers is an important approach to enhancing material properties for a large variety of applications. Due to the formation of irreversible crosslinks however, thermoset polymers tend to be challenging to pattern. In this paper we present a novel method of patterning a commonly used thermoset polymer, polydimethylsiloxane (PDMS), through controlled photothermal curing. We show that by incorporating 0.05% carbon black by weight into PDMS and moving a continuous wave-based laser engraver over the surface in a snake pattern, we can photothermally generate micron-scale surface features, and that these patterns can be controlled through laser parameters. Finally, we show that the photothermally patterned PDMS surfaces undergo changes in the optical properties as a result of patterning.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 5","pages":" 1269-1277"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d5lp00093a?page=search","citationCount":"0","resultStr":"{\"title\":\"Photothermal patterning of polydimethylsiloxane†\",\"authors\":\"Jacklyn A. DiPietro, Bellamarie Ludwig and Benjamin J. Lear\",\"doi\":\"10.1039/D5LP00093A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The surface patterning of polymers is an important approach to enhancing material properties for a large variety of applications. Due to the formation of irreversible crosslinks however, thermoset polymers tend to be challenging to pattern. In this paper we present a novel method of patterning a commonly used thermoset polymer, polydimethylsiloxane (PDMS), through controlled photothermal curing. We show that by incorporating 0.05% carbon black by weight into PDMS and moving a continuous wave-based laser engraver over the surface in a snake pattern, we can photothermally generate micron-scale surface features, and that these patterns can be controlled through laser parameters. Finally, we show that the photothermally patterned PDMS surfaces undergo changes in the optical properties as a result of patterning.</p>\",\"PeriodicalId\":101139,\"journal\":{\"name\":\"RSC Applied Polymers\",\"volume\":\" 5\",\"pages\":\" 1269-1277\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d5lp00093a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Polymers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d5lp00093a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d5lp00093a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The surface patterning of polymers is an important approach to enhancing material properties for a large variety of applications. Due to the formation of irreversible crosslinks however, thermoset polymers tend to be challenging to pattern. In this paper we present a novel method of patterning a commonly used thermoset polymer, polydimethylsiloxane (PDMS), through controlled photothermal curing. We show that by incorporating 0.05% carbon black by weight into PDMS and moving a continuous wave-based laser engraver over the surface in a snake pattern, we can photothermally generate micron-scale surface features, and that these patterns can be controlled through laser parameters. Finally, we show that the photothermally patterned PDMS surfaces undergo changes in the optical properties as a result of patterning.