用于辐射屏蔽的工程沸石框架:优化衰减的拓扑密度和结构紧凑性之间的相互作用

IF 3.3 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Silicon Pub Date : 2025-07-11 DOI:10.1007/s12633-025-03376-7
Z. Y. Khattari
{"title":"用于辐射屏蔽的工程沸石框架:优化衰减的拓扑密度和结构紧凑性之间的相互作用","authors":"Z. Y. Khattari","doi":"10.1007/s12633-025-03376-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study systematically evaluates the radiation shielding performance of silicon-based zeolite frameworks (FAU, LTA, CHA, AST, MOR, FER, RHO) by correlating their topological density (TD), structural compactness, and compositional parameters with photon attenuation metrics. The RHO framework emerges as the most effective shield, achieving exceptional MAC (47.914 cm<sup>2</sup>/g) and LAC (148.064 cm⁻<sup>1</sup>) values at 15 keV, attributed to its high density (ρ = 3.09 g/cm<sup>3</sup>), balanced topological parameters (TD₁₀ = 641, TD = 0.533), and moderate accessible volume (20.63%). Its superior performance is further underscored by the highest effective atomic number (Z<sub>eff</sub> = 40.82 at 15 keV), reflecting optimized photon interaction efficiency. In contrast, the AST framework, with low density (ρ = 0.217 g/cm<sup>3</sup>), excessive porosity (TD = 0.625, zero accessible volume), and poor atomic packing, exhibits the weakest attenuation (MAC = 6.488 cm<sup>2</sup>/g, LAC = 1.409 cm⁻<sup>1</sup>). The interplay of topological parameters reveals that intermediate TD values (e.g., RHO, FAU) enhance shielding by balancing atomic packing and density, while high porosity (e.g., AST) diminishes performance. Notably, RHO maintains its advantage at higher energies (e.g., 5.0 MeV: MAC = 0.034 cm<sup>2</sup>/g, LAC = 0.106 cm⁻<sup>1</sup>, Z<sub>eff</sub> = 17.03), whereas FAU’s moderate density (ρ = 0.388 g/cm<sup>3</sup>) and accessible volume (27.42%) make it suitable for multifunctional applications. These insights underscore the importance of harmonizing topological compactness, accessible volume, and density in designing zeolite-based shields, with RHO serving as a benchmark for high-performance radiation protection in nuclear and medical applications.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 12","pages":"2781 - 2796"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Zeolite Frameworks for Radiation Shielding: Interplay between Topological Density and Structural Compactness for Optimized Attenuation\",\"authors\":\"Z. Y. Khattari\",\"doi\":\"10.1007/s12633-025-03376-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study systematically evaluates the radiation shielding performance of silicon-based zeolite frameworks (FAU, LTA, CHA, AST, MOR, FER, RHO) by correlating their topological density (TD), structural compactness, and compositional parameters with photon attenuation metrics. The RHO framework emerges as the most effective shield, achieving exceptional MAC (47.914 cm<sup>2</sup>/g) and LAC (148.064 cm⁻<sup>1</sup>) values at 15 keV, attributed to its high density (ρ = 3.09 g/cm<sup>3</sup>), balanced topological parameters (TD₁₀ = 641, TD = 0.533), and moderate accessible volume (20.63%). Its superior performance is further underscored by the highest effective atomic number (Z<sub>eff</sub> = 40.82 at 15 keV), reflecting optimized photon interaction efficiency. In contrast, the AST framework, with low density (ρ = 0.217 g/cm<sup>3</sup>), excessive porosity (TD = 0.625, zero accessible volume), and poor atomic packing, exhibits the weakest attenuation (MAC = 6.488 cm<sup>2</sup>/g, LAC = 1.409 cm⁻<sup>1</sup>). The interplay of topological parameters reveals that intermediate TD values (e.g., RHO, FAU) enhance shielding by balancing atomic packing and density, while high porosity (e.g., AST) diminishes performance. Notably, RHO maintains its advantage at higher energies (e.g., 5.0 MeV: MAC = 0.034 cm<sup>2</sup>/g, LAC = 0.106 cm⁻<sup>1</sup>, Z<sub>eff</sub> = 17.03), whereas FAU’s moderate density (ρ = 0.388 g/cm<sup>3</sup>) and accessible volume (27.42%) make it suitable for multifunctional applications. These insights underscore the importance of harmonizing topological compactness, accessible volume, and density in designing zeolite-based shields, with RHO serving as a benchmark for high-performance radiation protection in nuclear and medical applications.</p></div>\",\"PeriodicalId\":776,\"journal\":{\"name\":\"Silicon\",\"volume\":\"17 12\",\"pages\":\"2781 - 2796\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silicon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12633-025-03376-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-025-03376-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过将硅基沸石骨架(FAU、LTA、CHA、AST、MOR、FER、RHO)的拓扑密度(TD)、结构紧凑度和成分参数与光子衰减指标相关联,系统地评估了它们的辐射屏蔽性能。RHO框架是最有效的屏蔽体,在15 keV时,由于其高密度(ρ = 3.09 g/cm3),平衡的拓扑参数(TD₁₀= 641,TD = 0.533)和适中的可访问体积(20.63%),实现了卓越的MAC (47.914 cm2/g)和LAC (148.064 cm⁻1)值。其最高的有效原子序数(在15 keV时Zeff = 40.82)进一步强调了其优越的性能,反映了优化的光子相互作用效率。相比而言,密度低(ρ = 0.217 g/cm3)、孔隙度高(TD = 0.625,零可达体积)、原子堆积性差的AST框架,其衰减最弱(MAC = 6.488 cm2/g, LAC = 1.409 cm⁻1)。拓扑参数的相互作用表明,中间TD值(如RHO, FAU)通过平衡原子堆积和密度来增强屏蔽,而高孔隙率(如AST)会降低屏蔽性能。值得注意的是,RHO在高能量下保持其优势(例如,5.0 MeV: MAC = 0.034 cm2/g, LAC = 0.106 cm - 1, Zeff = 17.03),而FAU的中等密度(ρ = 0.388 g/cm3)和可访问体积(27.42%)使其适合多功能应用。这些见解强调了在设计沸石基屏蔽时协调拓扑紧凑性、可访问体积和密度的重要性,RHO可作为核和医疗应用中高性能辐射防护的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Zeolite Frameworks for Radiation Shielding: Interplay between Topological Density and Structural Compactness for Optimized Attenuation

This study systematically evaluates the radiation shielding performance of silicon-based zeolite frameworks (FAU, LTA, CHA, AST, MOR, FER, RHO) by correlating their topological density (TD), structural compactness, and compositional parameters with photon attenuation metrics. The RHO framework emerges as the most effective shield, achieving exceptional MAC (47.914 cm2/g) and LAC (148.064 cm⁻1) values at 15 keV, attributed to its high density (ρ = 3.09 g/cm3), balanced topological parameters (TD₁₀ = 641, TD = 0.533), and moderate accessible volume (20.63%). Its superior performance is further underscored by the highest effective atomic number (Zeff = 40.82 at 15 keV), reflecting optimized photon interaction efficiency. In contrast, the AST framework, with low density (ρ = 0.217 g/cm3), excessive porosity (TD = 0.625, zero accessible volume), and poor atomic packing, exhibits the weakest attenuation (MAC = 6.488 cm2/g, LAC = 1.409 cm⁻1). The interplay of topological parameters reveals that intermediate TD values (e.g., RHO, FAU) enhance shielding by balancing atomic packing and density, while high porosity (e.g., AST) diminishes performance. Notably, RHO maintains its advantage at higher energies (e.g., 5.0 MeV: MAC = 0.034 cm2/g, LAC = 0.106 cm⁻1, Zeff = 17.03), whereas FAU’s moderate density (ρ = 0.388 g/cm3) and accessible volume (27.42%) make it suitable for multifunctional applications. These insights underscore the importance of harmonizing topological compactness, accessible volume, and density in designing zeolite-based shields, with RHO serving as a benchmark for high-performance radiation protection in nuclear and medical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信