分子间B-N配位增强了具有高热力学和动力学性能的可逆B-O键基环氧树脂

Qi Li, Dong Wang, Tianjiao Wang, Yang Zhang, Shiyang Liu, Shiwei Zhang, Zhufeng Hu, Liying Li, Guoyong Wang and Yingmin Zhao
{"title":"分子间B-N配位增强了具有高热力学和动力学性能的可逆B-O键基环氧树脂","authors":"Qi Li, Dong Wang, Tianjiao Wang, Yang Zhang, Shiyang Liu, Shiwei Zhang, Zhufeng Hu, Liying Li, Guoyong Wang and Yingmin Zhao","doi":"10.1039/D5LP00144G","DOIUrl":null,"url":null,"abstract":"<p >The development of recyclable and self-repairable vitrimer materials featuring reversible B–O bonds has garnered increasing attention. However, their stability and thermomechanical properties remain insufficient for engineering applications in reusable carbon fiber-reinforced composites (CFRCs). Herein, we report a high-performance epoxy vitrimer containing boronic ester bond-based dynamic exchange networks, to which a small amount of N-donating imidazole has been added for introducing intermolecular N–B coordination interactions. The obtained vitrimer (<strong>E51-NBO-IMZ</strong>) possessed a high glass transition temperature (<em>T</em><small><sub>g</sub></small>) of 198 °C and tensile modulus of 3.71 GPa. Compared to the system without imidazole, it exhibited significantly improved solvent resistance due to the stabilization effect of N–B coordination on the B-center atoms. Moreover, stress relaxation tests also indicated a lower activation energy (<em>E</em><small><sub>a</sub></small> = 151.31 kJ mol<small><sup>−1</sup></small>) of the <strong>E51-NBO-IMZ</strong> vitrimer, suggesting better dynamic exchange activity. Despite the high stability and improved thermomechanical properties, the self-repairing, recycling and degradation of the vitrimer and its CFRCs were successfully achieved under heating, stress or chemical environmental conditions, showing outstanding potential for practical applications.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 5","pages":" 1183-1192"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d5lp00144g?page=search","citationCount":"0","resultStr":"{\"title\":\"Reversible B–O bond-based epoxy vitrimers with high thermomechanical and dynamic properties enhanced by intermolecular B–N coordination\",\"authors\":\"Qi Li, Dong Wang, Tianjiao Wang, Yang Zhang, Shiyang Liu, Shiwei Zhang, Zhufeng Hu, Liying Li, Guoyong Wang and Yingmin Zhao\",\"doi\":\"10.1039/D5LP00144G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of recyclable and self-repairable vitrimer materials featuring reversible B–O bonds has garnered increasing attention. However, their stability and thermomechanical properties remain insufficient for engineering applications in reusable carbon fiber-reinforced composites (CFRCs). Herein, we report a high-performance epoxy vitrimer containing boronic ester bond-based dynamic exchange networks, to which a small amount of N-donating imidazole has been added for introducing intermolecular N–B coordination interactions. The obtained vitrimer (<strong>E51-NBO-IMZ</strong>) possessed a high glass transition temperature (<em>T</em><small><sub>g</sub></small>) of 198 °C and tensile modulus of 3.71 GPa. Compared to the system without imidazole, it exhibited significantly improved solvent resistance due to the stabilization effect of N–B coordination on the B-center atoms. Moreover, stress relaxation tests also indicated a lower activation energy (<em>E</em><small><sub>a</sub></small> = 151.31 kJ mol<small><sup>−1</sup></small>) of the <strong>E51-NBO-IMZ</strong> vitrimer, suggesting better dynamic exchange activity. Despite the high stability and improved thermomechanical properties, the self-repairing, recycling and degradation of the vitrimer and its CFRCs were successfully achieved under heating, stress or chemical environmental conditions, showing outstanding potential for practical applications.</p>\",\"PeriodicalId\":101139,\"journal\":{\"name\":\"RSC Applied Polymers\",\"volume\":\" 5\",\"pages\":\" 1183-1192\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d5lp00144g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Polymers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d5lp00144g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d5lp00144g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有可逆B-O键的可回收自修复玻璃体材料的开发越来越受到人们的关注。然而,它们的稳定性和热机械性能仍然不足以用于可重复使用的碳纤维增强复合材料的工程应用。本文报道了一种含有硼酯键动态交换网络的高性能环氧玻璃聚合物,其中添加了少量供氮咪唑以引入分子间N-B配位相互作用。所得的玻璃相(E51-NBO-IMZ)玻璃化转变温度高达198℃,拉伸模量为3.71 GPa。与不含咪唑的体系相比,由于N-B配位对b中心原子的稳定作用,该体系的耐溶剂性显著提高。此外,应力松弛试验还表明,E51-NBO-IMZ的活化能较低(Ea = 151.31 kJ mol−1),表明其具有较好的动态交换活性。尽管具有较高的稳定性和较好的热机械性能,但已成功地在加热、应力或化学环境条件下实现了玻璃体及其CFRCs的自修复、回收和降解,具有突出的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reversible B–O bond-based epoxy vitrimers with high thermomechanical and dynamic properties enhanced by intermolecular B–N coordination

Reversible B–O bond-based epoxy vitrimers with high thermomechanical and dynamic properties enhanced by intermolecular B–N coordination

The development of recyclable and self-repairable vitrimer materials featuring reversible B–O bonds has garnered increasing attention. However, their stability and thermomechanical properties remain insufficient for engineering applications in reusable carbon fiber-reinforced composites (CFRCs). Herein, we report a high-performance epoxy vitrimer containing boronic ester bond-based dynamic exchange networks, to which a small amount of N-donating imidazole has been added for introducing intermolecular N–B coordination interactions. The obtained vitrimer (E51-NBO-IMZ) possessed a high glass transition temperature (Tg) of 198 °C and tensile modulus of 3.71 GPa. Compared to the system without imidazole, it exhibited significantly improved solvent resistance due to the stabilization effect of N–B coordination on the B-center atoms. Moreover, stress relaxation tests also indicated a lower activation energy (Ea = 151.31 kJ mol−1) of the E51-NBO-IMZ vitrimer, suggesting better dynamic exchange activity. Despite the high stability and improved thermomechanical properties, the self-repairing, recycling and degradation of the vitrimer and its CFRCs were successfully achieved under heating, stress or chemical environmental conditions, showing outstanding potential for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信