Mahmoud A. Younis, Yusuke Sato, Seigo Kimura and Hideyoshi Harashima
{"title":"脂质纳米药物肝外递送的新策略:基于可电离阳离子脂质文库的蛋白质冠状介导的选择性靶向系统","authors":"Mahmoud A. Younis, Yusuke Sato, Seigo Kimura and Hideyoshi Harashima","doi":"10.1039/D5PM00079C","DOIUrl":null,"url":null,"abstract":"<p >Applying lipid nanoparticle (LNP) technology to ribonucleic acid (RNA) nanomedicines was integral to the success of mRNA vaccines against COVID-19. To expand the power of LNP technology, extrahepatic delivery systems have been developed using specific ligands that target the cells in question. However, recent increases in evidence support targeting without the need to attach specific ligands to nanocarriers. In this review, we focused on protein corona-mediated extrahepatic delivery of nanoparticles as an alternative to classic ligand-mediated active targeting. First, the interaction of LNPs with biological components and the impact that the physicochemical properties of LNPs exert on their biological fate are discussed. Then, we highlight a new system that targets activated hepatic stellate cells (aHSCs) as a successful model achieved through intensive optimization of LNPs based on an ionizable cationic lipid library. We also discuss cumulative evidence that support the ligand-free extrahepatic delivery of nanoparticles to a broad diversity of tissues, such as the spleen, lungs, brain, tumors, kidneys, placenta, pancreas, and bone marrow. In conclusion, we propose protein corona-mediated extrahepatic delivery as a new strategy of active targeting for RNA nanomedicines and inspire the future directions in this area.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 5","pages":" 982-1002"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d5pm00079c?page=search","citationCount":"0","resultStr":"{\"title\":\"A new strategy for the extrahepatic delivery of lipid-based nanomedicines: a protein corona-mediated selective targeting system based on an ionizable cationic lipid library\",\"authors\":\"Mahmoud A. Younis, Yusuke Sato, Seigo Kimura and Hideyoshi Harashima\",\"doi\":\"10.1039/D5PM00079C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Applying lipid nanoparticle (LNP) technology to ribonucleic acid (RNA) nanomedicines was integral to the success of mRNA vaccines against COVID-19. To expand the power of LNP technology, extrahepatic delivery systems have been developed using specific ligands that target the cells in question. However, recent increases in evidence support targeting without the need to attach specific ligands to nanocarriers. In this review, we focused on protein corona-mediated extrahepatic delivery of nanoparticles as an alternative to classic ligand-mediated active targeting. First, the interaction of LNPs with biological components and the impact that the physicochemical properties of LNPs exert on their biological fate are discussed. Then, we highlight a new system that targets activated hepatic stellate cells (aHSCs) as a successful model achieved through intensive optimization of LNPs based on an ionizable cationic lipid library. We also discuss cumulative evidence that support the ligand-free extrahepatic delivery of nanoparticles to a broad diversity of tissues, such as the spleen, lungs, brain, tumors, kidneys, placenta, pancreas, and bone marrow. In conclusion, we propose protein corona-mediated extrahepatic delivery as a new strategy of active targeting for RNA nanomedicines and inspire the future directions in this area.</p>\",\"PeriodicalId\":101141,\"journal\":{\"name\":\"RSC Pharmaceutics\",\"volume\":\" 5\",\"pages\":\" 982-1002\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d5pm00079c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d5pm00079c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d5pm00079c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new strategy for the extrahepatic delivery of lipid-based nanomedicines: a protein corona-mediated selective targeting system based on an ionizable cationic lipid library
Applying lipid nanoparticle (LNP) technology to ribonucleic acid (RNA) nanomedicines was integral to the success of mRNA vaccines against COVID-19. To expand the power of LNP technology, extrahepatic delivery systems have been developed using specific ligands that target the cells in question. However, recent increases in evidence support targeting without the need to attach specific ligands to nanocarriers. In this review, we focused on protein corona-mediated extrahepatic delivery of nanoparticles as an alternative to classic ligand-mediated active targeting. First, the interaction of LNPs with biological components and the impact that the physicochemical properties of LNPs exert on their biological fate are discussed. Then, we highlight a new system that targets activated hepatic stellate cells (aHSCs) as a successful model achieved through intensive optimization of LNPs based on an ionizable cationic lipid library. We also discuss cumulative evidence that support the ligand-free extrahepatic delivery of nanoparticles to a broad diversity of tissues, such as the spleen, lungs, brain, tumors, kidneys, placenta, pancreas, and bone marrow. In conclusion, we propose protein corona-mediated extrahepatic delivery as a new strategy of active targeting for RNA nanomedicines and inspire the future directions in this area.