Baskaran Mohan Dass, Ramya Padmanaban, Aparna Mahalingam, Neeshma Maniprakundil, Harshal Agarwal, Sreekuttan M. Unni, Vishal M. Dhavale and Santoshkumar D. Bhat
{"title":"富聚氨基苯磺酸单壁碳纳米管短侧链复合膜用于聚合物电解质燃料电池","authors":"Baskaran Mohan Dass, Ramya Padmanaban, Aparna Mahalingam, Neeshma Maniprakundil, Harshal Agarwal, Sreekuttan M. Unni, Vishal M. Dhavale and Santoshkumar D. Bhat","doi":"10.1039/D5LP00172B","DOIUrl":null,"url":null,"abstract":"<p >This study reports the fabrication of composite membranes based on short-side-chain perfluorosulfonic acid (SSC-PFSA) polymers reinforced with polyaminobenzene sulfonic acid-functionalized single-walled carbon nanotubes (PABS-f-SWCNTs) for enhanced polymer electrolyte membrane fuel cell (PEMFC) performance. The dual-functionalized SWCNTs, enriched with –SO<small><sub>3</sub></small>H and –NH<small><sub>2</sub></small> groups, were uniformly dispersed within the SSC-PFSA matrix, promoting dipolar interactions and efficient proton conduction pathways. Comprehensive characterization confirmed improved ion exchange capacity, water uptake, thermal stability, and proton conductivity, with the 0.5 wt% PABS-f-SWCNT composite membrane exhibiting optimal performance. Under fuel cell operating conditions, this membrane demonstrated a peak power density of 1707 mW cm<small><sup>−2</sup></small> at 100% RH and sustained high current density at reduced humidity, outperforming the pristine SSC-PFSA membrane. The findings highlight the synergistic role of zwitterionic functional groups and nanotube reinforcement in advancing next-generation PEMFC membrane technology.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 5","pages":" 1376-1384"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d5lp00172b?page=search","citationCount":"0","resultStr":"{\"title\":\"Short-side-chain composite membranes with polyaminobenzene sulfonic acid-enriched single-walled carbon nanotubes for polymer electrolyte fuel cells\",\"authors\":\"Baskaran Mohan Dass, Ramya Padmanaban, Aparna Mahalingam, Neeshma Maniprakundil, Harshal Agarwal, Sreekuttan M. Unni, Vishal M. Dhavale and Santoshkumar D. Bhat\",\"doi\":\"10.1039/D5LP00172B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study reports the fabrication of composite membranes based on short-side-chain perfluorosulfonic acid (SSC-PFSA) polymers reinforced with polyaminobenzene sulfonic acid-functionalized single-walled carbon nanotubes (PABS-f-SWCNTs) for enhanced polymer electrolyte membrane fuel cell (PEMFC) performance. The dual-functionalized SWCNTs, enriched with –SO<small><sub>3</sub></small>H and –NH<small><sub>2</sub></small> groups, were uniformly dispersed within the SSC-PFSA matrix, promoting dipolar interactions and efficient proton conduction pathways. Comprehensive characterization confirmed improved ion exchange capacity, water uptake, thermal stability, and proton conductivity, with the 0.5 wt% PABS-f-SWCNT composite membrane exhibiting optimal performance. Under fuel cell operating conditions, this membrane demonstrated a peak power density of 1707 mW cm<small><sup>−2</sup></small> at 100% RH and sustained high current density at reduced humidity, outperforming the pristine SSC-PFSA membrane. The findings highlight the synergistic role of zwitterionic functional groups and nanotube reinforcement in advancing next-generation PEMFC membrane technology.</p>\",\"PeriodicalId\":101139,\"journal\":{\"name\":\"RSC Applied Polymers\",\"volume\":\" 5\",\"pages\":\" 1376-1384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d5lp00172b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Polymers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d5lp00172b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d5lp00172b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究报道了基于短侧链全氟磺酸(SSC-PFSA)聚合物和聚氨基苯磺酸功能化单壁碳纳米管(PABS-f-SWCNTs)增强的复合膜的制备,用于增强聚合物电解质膜燃料电池(PEMFC)的性能。富含-SO3H和-NH2基团的双功能化SWCNTs均匀分散在SSC-PFSA基质中,促进了偶极相互作用和有效的质子传导途径。综合表征证实了离子交换能力、吸水性、热稳定性和质子电导率的提高,其中0.5 wt%的PABS-f-SWCNT复合膜表现出最佳性能。在燃料电池工作条件下,该膜在100%相对湿度下的峰值功率密度为1707 mW cm - 2,在降低湿度时保持高电流密度,优于原始SSC-PFSA膜。这些发现强调了两性离子官能团和纳米管增强在推进下一代PEMFC膜技术中的协同作用。
Short-side-chain composite membranes with polyaminobenzene sulfonic acid-enriched single-walled carbon nanotubes for polymer electrolyte fuel cells
This study reports the fabrication of composite membranes based on short-side-chain perfluorosulfonic acid (SSC-PFSA) polymers reinforced with polyaminobenzene sulfonic acid-functionalized single-walled carbon nanotubes (PABS-f-SWCNTs) for enhanced polymer electrolyte membrane fuel cell (PEMFC) performance. The dual-functionalized SWCNTs, enriched with –SO3H and –NH2 groups, were uniformly dispersed within the SSC-PFSA matrix, promoting dipolar interactions and efficient proton conduction pathways. Comprehensive characterization confirmed improved ion exchange capacity, water uptake, thermal stability, and proton conductivity, with the 0.5 wt% PABS-f-SWCNT composite membrane exhibiting optimal performance. Under fuel cell operating conditions, this membrane demonstrated a peak power density of 1707 mW cm−2 at 100% RH and sustained high current density at reduced humidity, outperforming the pristine SSC-PFSA membrane. The findings highlight the synergistic role of zwitterionic functional groups and nanotube reinforcement in advancing next-generation PEMFC membrane technology.