基于创新损耗模型的AlGaN/GaN肖特基二极管和整流器的研制

IF 4.5 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Li Huang;Yi-Li Lu;Hong-Liang Li;Ce Wang;Yi Wei;Ka-Ma Huang;Si-Hao Qian;Ce Wang
{"title":"基于创新损耗模型的AlGaN/GaN肖特基二极管和整流器的研制","authors":"Li Huang;Yi-Li Lu;Hong-Liang Li;Ce Wang;Yi Wei;Ka-Ma Huang;Si-Hao Qian;Ce Wang","doi":"10.1109/TMTT.2025.3550968","DOIUrl":null,"url":null,"abstract":"Reducing the Schottky barrier diode (SBD) loss is imperative for enhancing RF-dc conversion efficiency of rectifier in microwave wireless power transfer (MWPT) systems. However, existing diode models do not adequately describe the role of key loss factor-series resistance (<inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula>) and junction capacitance (<inline-formula> <tex-math>$C_{\\!j}$ </tex-math></inline-formula>) in rectification losses. A precise balance between <inline-formula> <tex-math>$C_{\\!j}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> is crucial for optimizing the physical design of SBDs and enhancing rectifier efficiency. Thus, we present an improved loss model designed for <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$C_{\\!j}$ </tex-math></inline-formula>. Our results reveal that the impact of the <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> is more significant compared to that of the <inline-formula> <tex-math>$C_{\\!j}$ </tex-math></inline-formula> in 1–8 GHz. Then, we designed an AlGaN/GaN Schottky structure with 10 nm barrier layer thickness which reduces resistive losses of <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> during carrier transport across the barrier layer, improving rectification efficiency. We have compared two SBD types: our thin-barrier AlGaN/GaN SBD (SBD-1, layer =10 nm) with <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$3~\\Omega $ </tex-math></inline-formula>, and a commercial SBD (SBD-2, layer =20 nm) with <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$7~\\Omega $ </tex-math></inline-formula>, both having almost the identical <inline-formula> <tex-math>$C_{\\!j}$ </tex-math></inline-formula>. At 5.8 GHz, efficiency of SBD-1 achieved 80.2% with 25.4 dBm input power and <inline-formula> <tex-math>$170~\\Omega $ </tex-math></inline-formula> load, while the SBD-2 reached 74.4% efficiency at 23 dBm and <inline-formula> <tex-math>$300~\\Omega $ </tex-math></inline-formula> load. This represents a 5.8% improvement in peak efficiency for SBD-1 compared to SBD-2. Furthermore, SBD-1 maintained high efficiency above 70% with input power from 17 to 28.5 dBm and load from 50 to <inline-formula> <tex-math>$900~\\Omega $ </tex-math></inline-formula>, highlighting the superiority of the loss model and thin barrier structure for microwave rectification.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 9","pages":"6129-6138"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of AlGaN/GaN Schottky Diodes and Rectifiers Based on Innovative Loss Model for Wireless Power Transfer\",\"authors\":\"Li Huang;Yi-Li Lu;Hong-Liang Li;Ce Wang;Yi Wei;Ka-Ma Huang;Si-Hao Qian;Ce Wang\",\"doi\":\"10.1109/TMTT.2025.3550968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing the Schottky barrier diode (SBD) loss is imperative for enhancing RF-dc conversion efficiency of rectifier in microwave wireless power transfer (MWPT) systems. However, existing diode models do not adequately describe the role of key loss factor-series resistance (<inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula>) and junction capacitance (<inline-formula> <tex-math>$C_{\\\\!j}$ </tex-math></inline-formula>) in rectification losses. A precise balance between <inline-formula> <tex-math>$C_{\\\\!j}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> is crucial for optimizing the physical design of SBDs and enhancing rectifier efficiency. Thus, we present an improved loss model designed for <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$C_{\\\\!j}$ </tex-math></inline-formula>. Our results reveal that the impact of the <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> is more significant compared to that of the <inline-formula> <tex-math>$C_{\\\\!j}$ </tex-math></inline-formula> in 1–8 GHz. Then, we designed an AlGaN/GaN Schottky structure with 10 nm barrier layer thickness which reduces resistive losses of <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> during carrier transport across the barrier layer, improving rectification efficiency. We have compared two SBD types: our thin-barrier AlGaN/GaN SBD (SBD-1, layer =10 nm) with <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$3~\\\\Omega $ </tex-math></inline-formula>, and a commercial SBD (SBD-2, layer =20 nm) with <inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$7~\\\\Omega $ </tex-math></inline-formula>, both having almost the identical <inline-formula> <tex-math>$C_{\\\\!j}$ </tex-math></inline-formula>. At 5.8 GHz, efficiency of SBD-1 achieved 80.2% with 25.4 dBm input power and <inline-formula> <tex-math>$170~\\\\Omega $ </tex-math></inline-formula> load, while the SBD-2 reached 74.4% efficiency at 23 dBm and <inline-formula> <tex-math>$300~\\\\Omega $ </tex-math></inline-formula> load. This represents a 5.8% improvement in peak efficiency for SBD-1 compared to SBD-2. Furthermore, SBD-1 maintained high efficiency above 70% with input power from 17 to 28.5 dBm and load from 50 to <inline-formula> <tex-math>$900~\\\\Omega $ </tex-math></inline-formula>, highlighting the superiority of the loss model and thin barrier structure for microwave rectification.\",\"PeriodicalId\":13272,\"journal\":{\"name\":\"IEEE Transactions on Microwave Theory and Techniques\",\"volume\":\"73 9\",\"pages\":\"6129-6138\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Microwave Theory and Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948021/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10948021/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

降低肖特基势垒二极管(SBD)损耗是提高微波无线功率传输(MWPT)系统中整流器RF-dc转换效率的关键。然而,现有的二极管模型没有充分描述关键损耗因子-串联电阻($R_{S}$)和结电容($C_{\!J}$)表示整流损失。在$C_{\!j}$和$R_{S}$对于优化sbd的物理设计和提高整流器效率至关重要。因此,我们提出了一种针对$R_{S}$和$C_{\!j} $。我们的研究结果表明,$R_{S}$的影响比$C_{\!j}$在1-8 GHz。然后,我们设计了具有10 nm势垒层厚度的AlGaN/GaN Schottky结构,该结构减小了载流子在势垒层上输运过程中R_{S}$的电阻损失,提高了整流效率。我们比较了两种SBD类型:我们的薄势垒AlGaN/GaN SBD (SBD-1,层=10 nm), $R_{S}$为$3~\Omega $,和商业SBD (SBD-2,层=20 nm), $R_{S}$为$7~\Omega $,两者具有几乎相同的$C_{\!j} $。在5.8 GHz时,SBD-1在输入功率为25.4 dBm、负载为170~\Omega $时效率达到80.2%,而SBD-2在输入功率为23 dBm、负载为300~\Omega $时效率达到74.4%。与SBD-2相比,SBD-1的峰值效率提高了5.8%。此外,SBD-1在输入功率为17 ~ 28.5 dBm,负载为50 ~ 900~\Omega $的情况下保持了70%以上的高效率,突出了损耗模型和薄势垒结构用于微波整流的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of AlGaN/GaN Schottky Diodes and Rectifiers Based on Innovative Loss Model for Wireless Power Transfer
Reducing the Schottky barrier diode (SBD) loss is imperative for enhancing RF-dc conversion efficiency of rectifier in microwave wireless power transfer (MWPT) systems. However, existing diode models do not adequately describe the role of key loss factor-series resistance ( $R_{S}$ ) and junction capacitance ( $C_{\!j}$ ) in rectification losses. A precise balance between $C_{\!j}$ and $R_{S}$ is crucial for optimizing the physical design of SBDs and enhancing rectifier efficiency. Thus, we present an improved loss model designed for $R_{S}$ and $C_{\!j}$ . Our results reveal that the impact of the $R_{S}$ is more significant compared to that of the $C_{\!j}$ in 1–8 GHz. Then, we designed an AlGaN/GaN Schottky structure with 10 nm barrier layer thickness which reduces resistive losses of $R_{S}$ during carrier transport across the barrier layer, improving rectification efficiency. We have compared two SBD types: our thin-barrier AlGaN/GaN SBD (SBD-1, layer =10 nm) with $R_{S}$ of $3~\Omega $ , and a commercial SBD (SBD-2, layer =20 nm) with $R_{S}$ of $7~\Omega $ , both having almost the identical $C_{\!j}$ . At 5.8 GHz, efficiency of SBD-1 achieved 80.2% with 25.4 dBm input power and $170~\Omega $ load, while the SBD-2 reached 74.4% efficiency at 23 dBm and $300~\Omega $ load. This represents a 5.8% improvement in peak efficiency for SBD-1 compared to SBD-2. Furthermore, SBD-1 maintained high efficiency above 70% with input power from 17 to 28.5 dBm and load from 50 to $900~\Omega $ , highlighting the superiority of the loss model and thin barrier structure for microwave rectification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Microwave Theory and Techniques
IEEE Transactions on Microwave Theory and Techniques 工程技术-工程:电子与电气
CiteScore
8.60
自引率
18.60%
发文量
486
审稿时长
6 months
期刊介绍: The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信