利用多通道生物阻抗谱技术进行乳腺肿瘤的区域识别

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuanjing Zhang;Shuai Li;Jie He;Yang Wu;Hao Wang;Kai Liu;Jiafeng Yao
{"title":"利用多通道生物阻抗谱技术进行乳腺肿瘤的区域识别","authors":"Yuanjing Zhang;Shuai Li;Jie He;Yang Wu;Hao Wang;Kai Liu;Jiafeng Yao","doi":"10.1109/JSEN.2025.3596237","DOIUrl":null,"url":null,"abstract":"A multichannel bioimpedance spectroscopy (MC-BIS) method is proposed for regional identification of breast tumors. First, the sensor is partitioned to scan the breast across nine subregions, and an empty-field calibration algorithm is applied to normalize the impedance spectra. Next, numerical simulations are conducted to investigate the relationship between the electrical characteristics of unifocal tumors and their regional distribution. Subsequently, the performance of three classifiers—support vector machine (SVM), random forest (RF), and feedforward neural network (FNN)—is evaluated for bifocal tumor localization. The simulation results indicate significant differences in the impedance characteristics between tumor regions and normal tissue regions (<inline-formula> <tex-math>${P} \\lt 0.001$ </tex-math></inline-formula>). When a tumor is present in a subregion, the corresponding imaginary part relaxation impedance <inline-formula> <tex-math>${Z} _{\\text {imag-relax}}$ </tex-math></inline-formula> exceeds <inline-formula> <tex-math>$2.004~\\Omega $ </tex-math></inline-formula>. For bifocal breast tumor localization, the FNN classifier achieved the best performance, with a classification accuracy of 95.46% through fivefold cross-validation. To validate the simulation results, biological tissues with distinct electrical properties were selected to simulate tumor and normal tissue. The experimental accuracy reached 86.94%. The MC-BIS method enables rapid and accurate localization of tumor regions, providing a new technological approach for early screening and diagnosis of breast cancer.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"35438-35446"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional Identification of Breast Tumors Using Multichannel Bioimpedance Spectroscopy\",\"authors\":\"Yuanjing Zhang;Shuai Li;Jie He;Yang Wu;Hao Wang;Kai Liu;Jiafeng Yao\",\"doi\":\"10.1109/JSEN.2025.3596237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multichannel bioimpedance spectroscopy (MC-BIS) method is proposed for regional identification of breast tumors. First, the sensor is partitioned to scan the breast across nine subregions, and an empty-field calibration algorithm is applied to normalize the impedance spectra. Next, numerical simulations are conducted to investigate the relationship between the electrical characteristics of unifocal tumors and their regional distribution. Subsequently, the performance of three classifiers—support vector machine (SVM), random forest (RF), and feedforward neural network (FNN)—is evaluated for bifocal tumor localization. The simulation results indicate significant differences in the impedance characteristics between tumor regions and normal tissue regions (<inline-formula> <tex-math>${P} \\\\lt 0.001$ </tex-math></inline-formula>). When a tumor is present in a subregion, the corresponding imaginary part relaxation impedance <inline-formula> <tex-math>${Z} _{\\\\text {imag-relax}}$ </tex-math></inline-formula> exceeds <inline-formula> <tex-math>$2.004~\\\\Omega $ </tex-math></inline-formula>. For bifocal breast tumor localization, the FNN classifier achieved the best performance, with a classification accuracy of 95.46% through fivefold cross-validation. To validate the simulation results, biological tissues with distinct electrical properties were selected to simulate tumor and normal tissue. The experimental accuracy reached 86.94%. The MC-BIS method enables rapid and accurate localization of tumor regions, providing a new technological approach for early screening and diagnosis of breast cancer.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 18\",\"pages\":\"35438-35446\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11123642/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11123642/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于乳腺肿瘤区域识别的多通道生物阻抗谱(MC-BIS)方法。首先,将传感器划分为9个子区域扫描乳房,并采用空场校准算法对阻抗谱进行归一化;其次,通过数值模拟研究单灶性肿瘤的电特性与其区域分布之间的关系。随后,评估了支持向量机(SVM)、随机森林(RF)和前馈神经网络(FNN)三种分类器在双焦点肿瘤定位中的性能。模拟结果表明,肿瘤区域与正常组织区域之间的阻抗特性存在显著差异(${P} \lt 0.001$)。当肿瘤存在于子区域时,对应的虚部松弛阻抗${Z} _{\text {image -relax}}$超过$2.004~\Omega $。对于双焦点乳腺肿瘤定位,FNN分类器通过5次交叉验证,分类准确率达到95.46%,达到最佳效果。为了验证模拟结果,选择具有不同电学特性的生物组织分别模拟肿瘤组织和正常组织。实验精度达到86.94%。MC-BIS方法能够快速准确地定位肿瘤区域,为乳腺癌的早期筛查和诊断提供了新的技术途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regional Identification of Breast Tumors Using Multichannel Bioimpedance Spectroscopy
A multichannel bioimpedance spectroscopy (MC-BIS) method is proposed for regional identification of breast tumors. First, the sensor is partitioned to scan the breast across nine subregions, and an empty-field calibration algorithm is applied to normalize the impedance spectra. Next, numerical simulations are conducted to investigate the relationship between the electrical characteristics of unifocal tumors and their regional distribution. Subsequently, the performance of three classifiers—support vector machine (SVM), random forest (RF), and feedforward neural network (FNN)—is evaluated for bifocal tumor localization. The simulation results indicate significant differences in the impedance characteristics between tumor regions and normal tissue regions ( ${P} \lt 0.001$ ). When a tumor is present in a subregion, the corresponding imaginary part relaxation impedance ${Z} _{\text {imag-relax}}$ exceeds $2.004~\Omega $ . For bifocal breast tumor localization, the FNN classifier achieved the best performance, with a classification accuracy of 95.46% through fivefold cross-validation. To validate the simulation results, biological tissues with distinct electrical properties were selected to simulate tumor and normal tissue. The experimental accuracy reached 86.94%. The MC-BIS method enables rapid and accurate localization of tumor regions, providing a new technological approach for early screening and diagnosis of breast cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信