利用Playtrace聚类识别《Dominion》中的策略

IF 2.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Anthony Owen
{"title":"利用Playtrace聚类识别《Dominion》中的策略","authors":"Anthony Owen","doi":"10.1109/TG.2024.3520862","DOIUrl":null,"url":null,"abstract":"We demonstrate the use of playtraces and playtrace clustering to identify strategies and card synergies in deck building card games, using <italic>Dominion</i> as an example. We analyze playtraces generated from both online human play and a variety of AI agents, examining two types: card counts by round in a player's deck and N-Grams generated from player actions. Using both the <inline-formula> <tex-math>$L_{k}$</tex-math> </inline-formula>-norm and Jensen–Shannon distance measures, in-conjunction with <inline-formula> <tex-math>$K$</tex-math> </inline-formula>-Means, <inline-formula> <tex-math>$K$</tex-math> </inline-formula>-Medoids and DBSCAN algorithms, we show that playtraces and distinct clusters can reveal both longer term strategies and card synergies. In addition, we use a restricted play framework to increase the variation in strategies and tactics explored by AI agents. Finally, we suggest that the game-agnostic, N-Gram-based approach may support strategy exploration in tabletop games more broadly.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"17 3","pages":"631-641"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Strategies in Dominion Using Playtrace Clustering\",\"authors\":\"Anthony Owen\",\"doi\":\"10.1109/TG.2024.3520862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the use of playtraces and playtrace clustering to identify strategies and card synergies in deck building card games, using <italic>Dominion</i> as an example. We analyze playtraces generated from both online human play and a variety of AI agents, examining two types: card counts by round in a player's deck and N-Grams generated from player actions. Using both the <inline-formula> <tex-math>$L_{k}$</tex-math> </inline-formula>-norm and Jensen–Shannon distance measures, in-conjunction with <inline-formula> <tex-math>$K$</tex-math> </inline-formula>-Means, <inline-formula> <tex-math>$K$</tex-math> </inline-formula>-Medoids and DBSCAN algorithms, we show that playtraces and distinct clusters can reveal both longer term strategies and card synergies. In addition, we use a restricted play framework to increase the variation in strategies and tactics explored by AI agents. Finally, we suggest that the game-agnostic, N-Gram-based approach may support strategy exploration in tabletop games more broadly.\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"17 3\",\"pages\":\"631-641\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812042/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812042/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们演示了使用playtrace和playtrace聚类来识别牌组构建卡牌游戏中的策略和卡牌协同作用,以Dominion为例。我们分析了在线人类游戏和各种AI代理生成的游戏轨迹,检查了两种类型:玩家牌组中每轮的牌数和玩家动作生成的N-Grams。使用$L_{k}$ norm和Jensen-Shannon距离度量,结合$ k $ -Means、$ k $ -Medoids和DBSCAN算法,我们发现玩法轨迹和不同的集群可以揭示长期策略和纸牌协同效应。此外,我们使用一个受限的游戏框架来增加AI代理探索的策略和战术的变化。最后,我们认为这种与游戏无关、基于n - gram的方法可能更广泛地支持桌面游戏中的策略探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Strategies in Dominion Using Playtrace Clustering
We demonstrate the use of playtraces and playtrace clustering to identify strategies and card synergies in deck building card games, using Dominion as an example. We analyze playtraces generated from both online human play and a variety of AI agents, examining two types: card counts by round in a player's deck and N-Grams generated from player actions. Using both the $L_{k}$ -norm and Jensen–Shannon distance measures, in-conjunction with $K$ -Means, $K$ -Medoids and DBSCAN algorithms, we show that playtraces and distinct clusters can reveal both longer term strategies and card synergies. In addition, we use a restricted play framework to increase the variation in strategies and tactics explored by AI agents. Finally, we suggest that the game-agnostic, N-Gram-based approach may support strategy exploration in tabletop games more broadly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信