一种高效、可扩展、基于四波段超材料的环境射频能量采集器

IF 4.5 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Aaron M. Graham;Spyridon Nektarios Daskalakis;Vincent Fusco;Manos M. Tentzeris;Stylianos D. Asimonis
{"title":"一种高效、可扩展、基于四波段超材料的环境射频能量采集器","authors":"Aaron M. Graham;Spyridon Nektarios Daskalakis;Vincent Fusco;Manos M. Tentzeris;Stylianos D. Asimonis","doi":"10.1109/TMTT.2025.3555848","DOIUrl":null,"url":null,"abstract":"This article presents an innovative metamaterial-based radio frequency (RF) energy harvesting system designed to efficiently capture ambient RF energy across multiple frequency bands, including Wi-Fi (2.45 GHz) and 5G (0.9, 1.8, 2.1 GHz). Utilizing electric inductive-capacitive resonators and a rectification circuit, the system converts ambient RF energy into direct current (dc) power with high efficiency. Specifically, a single unit cell of the proposed <inline-formula> <tex-math>$8 \\times 8$ </tex-math></inline-formula> harvester is capable of generating up to <inline-formula> <tex-math>$562~\\mu $ </tex-math></inline-formula>W under an RF ambient power density of <inline-formula> <tex-math>$40~\\mu $ </tex-math></inline-formula>W/cm<sup>2</sup>. This high efficiency and scalability make it ideal for powering low-power Internet-of-Things (IoT) devices and sensors. The design emphasizes optimizing the unit cell to minimize computational complexity, enabling a more straightforward and scalable implementation. Experimental results demonstrate the system’s ability to efficiently harvest RF power across the specified bands, validating its potential as a sustainable solution for the growing power demands of IoT networks.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 9","pages":"6787-6798"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Highly Efficient, Scalable, Tetra-Band Metamaterial-Based Ambient RF Energy Harvester\",\"authors\":\"Aaron M. Graham;Spyridon Nektarios Daskalakis;Vincent Fusco;Manos M. Tentzeris;Stylianos D. Asimonis\",\"doi\":\"10.1109/TMTT.2025.3555848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an innovative metamaterial-based radio frequency (RF) energy harvesting system designed to efficiently capture ambient RF energy across multiple frequency bands, including Wi-Fi (2.45 GHz) and 5G (0.9, 1.8, 2.1 GHz). Utilizing electric inductive-capacitive resonators and a rectification circuit, the system converts ambient RF energy into direct current (dc) power with high efficiency. Specifically, a single unit cell of the proposed <inline-formula> <tex-math>$8 \\\\times 8$ </tex-math></inline-formula> harvester is capable of generating up to <inline-formula> <tex-math>$562~\\\\mu $ </tex-math></inline-formula>W under an RF ambient power density of <inline-formula> <tex-math>$40~\\\\mu $ </tex-math></inline-formula>W/cm<sup>2</sup>. This high efficiency and scalability make it ideal for powering low-power Internet-of-Things (IoT) devices and sensors. The design emphasizes optimizing the unit cell to minimize computational complexity, enabling a more straightforward and scalable implementation. Experimental results demonstrate the system’s ability to efficiently harvest RF power across the specified bands, validating its potential as a sustainable solution for the growing power demands of IoT networks.\",\"PeriodicalId\":13272,\"journal\":{\"name\":\"IEEE Transactions on Microwave Theory and Techniques\",\"volume\":\"73 9\",\"pages\":\"6787-6798\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Microwave Theory and Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964368/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10964368/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种创新的基于超材料的射频(RF)能量收集系统,旨在有效地捕获多个频段的环境射频能量,包括Wi-Fi (2.45 GHz)和5G (0.9, 1.8, 2.1 GHz)。该系统利用电感容谐振器和整流电路,将环境射频能量高效率地转换为直流(dc)功率。具体来说,在RF环境功率密度为40~\mu $ W/cm2的情况下,所提出的8 \ × 8$收割机的单个单元电池能够产生高达562~\mu $ W的功率。这种高效率和可扩展性使其成为低功耗物联网(IoT)设备和传感器供电的理想选择。该设计强调优化单元,以最大限度地减少计算复杂性,从而实现更直接和可扩展的实现。实验结果表明,该系统能够有效地收集指定频段的射频功率,验证了其作为物联网网络不断增长的功率需求的可持续解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Highly Efficient, Scalable, Tetra-Band Metamaterial-Based Ambient RF Energy Harvester
This article presents an innovative metamaterial-based radio frequency (RF) energy harvesting system designed to efficiently capture ambient RF energy across multiple frequency bands, including Wi-Fi (2.45 GHz) and 5G (0.9, 1.8, 2.1 GHz). Utilizing electric inductive-capacitive resonators and a rectification circuit, the system converts ambient RF energy into direct current (dc) power with high efficiency. Specifically, a single unit cell of the proposed $8 \times 8$ harvester is capable of generating up to $562~\mu $ W under an RF ambient power density of $40~\mu $ W/cm2. This high efficiency and scalability make it ideal for powering low-power Internet-of-Things (IoT) devices and sensors. The design emphasizes optimizing the unit cell to minimize computational complexity, enabling a more straightforward and scalable implementation. Experimental results demonstrate the system’s ability to efficiently harvest RF power across the specified bands, validating its potential as a sustainable solution for the growing power demands of IoT networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Microwave Theory and Techniques
IEEE Transactions on Microwave Theory and Techniques 工程技术-工程:电子与电气
CiteScore
8.60
自引率
18.60%
发文量
486
审稿时长
6 months
期刊介绍: The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信