用于大范围热条件下应变和温度传感的原位封装LiNbO3 SAW谐振器

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Feng Zhang;Hongliang Wang;Weili Zhang;Yongjun Cui;Peng Zhang;Qi Ding
{"title":"用于大范围热条件下应变和温度传感的原位封装LiNbO3 SAW谐振器","authors":"Feng Zhang;Hongliang Wang;Weili Zhang;Yongjun Cui;Peng Zhang;Qi Ding","doi":"10.1109/JSEN.2025.3592722","DOIUrl":null,"url":null,"abstract":"Surface acoustic wave (SAW) devices have a wide range of application prospects in ultralow-temperature environments. This article uses COMSOL software simulation to realize the preparation of Y128° LiNiO3 SAW resonator (SAWR) and uses silicon oxide wafers to prepare the packaging cap. The in situ packaged SAWR preparation is completed by adhesive bonding. The tensile strength of the packaged structure can reach 7.49 MPa. A normal temperature strain experimental platform and a high- and low-temperature experimental platform are built to experimentally explore the strain characteristics of the resonator at room temperature and the temperature sensing characteristics of low and high temperatures. The experimental results show that the mounting structure will affect the range of strain sensing, and the in situ packaged SAWR is not suitable for large strain test environments. In the range of 0–<inline-formula> <tex-math>$1000~\\mu \\varepsilon $ </tex-math></inline-formula>, its frequency is basically linear with strain, the linear sensitivity (SSF) is −161 Hz/<inline-formula> <tex-math>$\\mu \\varepsilon $ </tex-math></inline-formula>, and the strain frequency coefficient (SCF) is 0.49 ppm/<inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>. The in situ packaged SAWR can work normally at <inline-formula> <tex-math>$- 196~^{\\circ }$ </tex-math></inline-formula>C. Its frequency-temperature relationship in the range of <inline-formula> <tex-math>$- 196~^{\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$- 150~^{\\circ }$ </tex-math></inline-formula>C is not completely linear, and there is a high-order temperature sensitivity. The frequency–temperature relationship in the temperature range of <inline-formula> <tex-math>$- 150~^{\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$140~^{\\circ }$ </tex-math></inline-formula>C has a strong linear characteristic, and its linear temperature sensitivity is −26.8 kHz/°C. It has good application prospects in wide temperature band wireless passive temperature sensors across zero degrees and normal temperature strain sensing.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"34430-34439"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Packaged LiNbO3 SAW Resonators for Strain and Temperature Sensing Under Wide-Range Thermal Conditions\",\"authors\":\"Feng Zhang;Hongliang Wang;Weili Zhang;Yongjun Cui;Peng Zhang;Qi Ding\",\"doi\":\"10.1109/JSEN.2025.3592722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface acoustic wave (SAW) devices have a wide range of application prospects in ultralow-temperature environments. This article uses COMSOL software simulation to realize the preparation of Y128° LiNiO3 SAW resonator (SAWR) and uses silicon oxide wafers to prepare the packaging cap. The in situ packaged SAWR preparation is completed by adhesive bonding. The tensile strength of the packaged structure can reach 7.49 MPa. A normal temperature strain experimental platform and a high- and low-temperature experimental platform are built to experimentally explore the strain characteristics of the resonator at room temperature and the temperature sensing characteristics of low and high temperatures. The experimental results show that the mounting structure will affect the range of strain sensing, and the in situ packaged SAWR is not suitable for large strain test environments. In the range of 0–<inline-formula> <tex-math>$1000~\\\\mu \\\\varepsilon $ </tex-math></inline-formula>, its frequency is basically linear with strain, the linear sensitivity (SSF) is −161 Hz/<inline-formula> <tex-math>$\\\\mu \\\\varepsilon $ </tex-math></inline-formula>, and the strain frequency coefficient (SCF) is 0.49 ppm/<inline-formula> <tex-math>$\\\\varepsilon $ </tex-math></inline-formula>. The in situ packaged SAWR can work normally at <inline-formula> <tex-math>$- 196~^{\\\\circ }$ </tex-math></inline-formula>C. Its frequency-temperature relationship in the range of <inline-formula> <tex-math>$- 196~^{\\\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$- 150~^{\\\\circ }$ </tex-math></inline-formula>C is not completely linear, and there is a high-order temperature sensitivity. The frequency–temperature relationship in the temperature range of <inline-formula> <tex-math>$- 150~^{\\\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$140~^{\\\\circ }$ </tex-math></inline-formula>C has a strong linear characteristic, and its linear temperature sensitivity is −26.8 kHz/°C. It has good application prospects in wide temperature band wireless passive temperature sensors across zero degrees and normal temperature strain sensing.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 18\",\"pages\":\"34430-34439\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11106357/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11106357/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

表面声波(SAW)器件在超低温环境中具有广泛的应用前景。本文利用COMSOL软件模拟实现了Y128°LiNiO3 SAW谐振器(SAWR)的制备,并使用氧化硅晶片制备封装帽。原位封装SAWR制备通过粘接完成。包装结构抗拉强度可达7.49 MPa。搭建常温应变实验平台和高低温实验平台,实验探索谐振器在室温下的应变特性以及低温和高温下的温度传感特性。实验结果表明,安装结构会影响应变传感的范围,原位封装的SAWR不适合大应变测试环境。在0 ~ $1000~\mu \varepsilon $范围内,其频率与应变基本成线性关系,线性灵敏度(SSF)为−161 Hz/ $\mu \varepsilon $,应变频率系数(SCF)为0.49 ppm/ $\varepsilon $。原位封装的SAWR在$- 196~^{\circ }$℃下可以正常工作,其在$- 196~^{\circ }$ ~ $- 150~^{\circ }$℃范围内的频率-温度关系不是完全线性的,具有高阶温度灵敏度。在$- 150~^{\circ }$ C ~ $140~^{\circ }$ C温度范围内,频率-温度关系具有较强的线性特性,其线性温度灵敏度为−26.8 kHz/°C。它在跨零度和常温应变的宽温带无线无源温度传感器中具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Situ Packaged LiNbO3 SAW Resonators for Strain and Temperature Sensing Under Wide-Range Thermal Conditions
Surface acoustic wave (SAW) devices have a wide range of application prospects in ultralow-temperature environments. This article uses COMSOL software simulation to realize the preparation of Y128° LiNiO3 SAW resonator (SAWR) and uses silicon oxide wafers to prepare the packaging cap. The in situ packaged SAWR preparation is completed by adhesive bonding. The tensile strength of the packaged structure can reach 7.49 MPa. A normal temperature strain experimental platform and a high- and low-temperature experimental platform are built to experimentally explore the strain characteristics of the resonator at room temperature and the temperature sensing characteristics of low and high temperatures. The experimental results show that the mounting structure will affect the range of strain sensing, and the in situ packaged SAWR is not suitable for large strain test environments. In the range of 0– $1000~\mu \varepsilon $ , its frequency is basically linear with strain, the linear sensitivity (SSF) is −161 Hz/ $\mu \varepsilon $ , and the strain frequency coefficient (SCF) is 0.49 ppm/ $\varepsilon $ . The in situ packaged SAWR can work normally at $- 196~^{\circ }$ C. Its frequency-temperature relationship in the range of $- 196~^{\circ }$ C to $- 150~^{\circ }$ C is not completely linear, and there is a high-order temperature sensitivity. The frequency–temperature relationship in the temperature range of $- 150~^{\circ }$ C to $140~^{\circ }$ C has a strong linear characteristic, and its linear temperature sensitivity is −26.8 kHz/°C. It has good application prospects in wide temperature band wireless passive temperature sensors across zero degrees and normal temperature strain sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信