一种工作在锁定边界附近的频率传感器的分析

IF 4.5 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mabel Pontón;Sergio Sancho;Almudena Suárez
{"title":"一种工作在锁定边界附近的频率传感器的分析","authors":"Mabel Pontón;Sergio Sancho;Almudena Suárez","doi":"10.1109/TMTT.2025.3552963","DOIUrl":null,"url":null,"abstract":"We present an in-depth investigation of a beat-frequency sensor based on an injected oscillator operating near its locking boundaries. Under these conditions, the beat frequency exhibits higher sensitivity to the material under test (MUT) than the free-running oscillation frequency. We will derive a general expression for the beat frequency as influenced by the MUT. This expression depends on an admittance function that can be extracted from harmonic-balance (HB) simulations, so it can be applied to oscillators of arbitrary complexity. In the new formulation, both the free-running solution and the locking bandwidth will vary with the sensing parameter. We will analyze in depth the beat-frequency curve relative to the parameter under test, as well as its dependence on the design elements. We will also present a new method to establish the selected locking boundary at a suitable value for the anticipated MUT variation range. Additionally, we will demonstrate the potential to sense at a multiple of the beat frequency, thereby increasing frequency sensitivity. For the first time to our knowledge, we will analyze the oscillator phase noise when operating near the locking boundaries by means of a perturbation formulation in the frequency domain. The methods will be illustrated through their application to a cubic-nonlinearity oscillator, enabling a deep theoretical insight, and to a realistic transistor-based oscillator with the MUT placed on top of a capacitive transmission line.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 9","pages":"6192-6208"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10948011","citationCount":"0","resultStr":"{\"title\":\"Analysis of a Beat-Frequency Sensor Operating Near the Locking Boundary\",\"authors\":\"Mabel Pontón;Sergio Sancho;Almudena Suárez\",\"doi\":\"10.1109/TMTT.2025.3552963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an in-depth investigation of a beat-frequency sensor based on an injected oscillator operating near its locking boundaries. Under these conditions, the beat frequency exhibits higher sensitivity to the material under test (MUT) than the free-running oscillation frequency. We will derive a general expression for the beat frequency as influenced by the MUT. This expression depends on an admittance function that can be extracted from harmonic-balance (HB) simulations, so it can be applied to oscillators of arbitrary complexity. In the new formulation, both the free-running solution and the locking bandwidth will vary with the sensing parameter. We will analyze in depth the beat-frequency curve relative to the parameter under test, as well as its dependence on the design elements. We will also present a new method to establish the selected locking boundary at a suitable value for the anticipated MUT variation range. Additionally, we will demonstrate the potential to sense at a multiple of the beat frequency, thereby increasing frequency sensitivity. For the first time to our knowledge, we will analyze the oscillator phase noise when operating near the locking boundaries by means of a perturbation formulation in the frequency domain. The methods will be illustrated through their application to a cubic-nonlinearity oscillator, enabling a deep theoretical insight, and to a realistic transistor-based oscillator with the MUT placed on top of a capacitive transmission line.\",\"PeriodicalId\":13272,\"journal\":{\"name\":\"IEEE Transactions on Microwave Theory and Techniques\",\"volume\":\"73 9\",\"pages\":\"6192-6208\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10948011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Microwave Theory and Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948011/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10948011/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个深入的研究基于注入振荡器在其锁定边界附近工作的热频率传感器。在这些条件下,振动频率比自由振荡频率对被测材料(MUT)表现出更高的灵敏度。我们将推导出受MUT影响的拍频的一般表达式。这个表达式依赖于一个可以从谐波平衡(HB)模拟中提取的导纳函数,因此它可以应用于任意复杂性的振荡器。在新公式中,自由运行解和锁定带宽都随传感参数的变化而变化。我们将深入分析相对于测试参数的频率曲线,以及它对设计元素的依赖关系。我们还将提出一种新的方法,在预期MUT变化范围的合适值上建立所选择的锁定边界。此外,我们将演示以拍频的倍数进行感测的潜力,从而提高频率灵敏度。据我们所知,我们将第一次利用频域中的扰动公式来分析在锁定边界附近工作时的振荡器相位噪声。这些方法将通过它们在三次非线性振荡器中的应用来说明,从而实现深入的理论见解,以及将MUT置于电容传输线顶部的现实晶体管振荡器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a Beat-Frequency Sensor Operating Near the Locking Boundary
We present an in-depth investigation of a beat-frequency sensor based on an injected oscillator operating near its locking boundaries. Under these conditions, the beat frequency exhibits higher sensitivity to the material under test (MUT) than the free-running oscillation frequency. We will derive a general expression for the beat frequency as influenced by the MUT. This expression depends on an admittance function that can be extracted from harmonic-balance (HB) simulations, so it can be applied to oscillators of arbitrary complexity. In the new formulation, both the free-running solution and the locking bandwidth will vary with the sensing parameter. We will analyze in depth the beat-frequency curve relative to the parameter under test, as well as its dependence on the design elements. We will also present a new method to establish the selected locking boundary at a suitable value for the anticipated MUT variation range. Additionally, we will demonstrate the potential to sense at a multiple of the beat frequency, thereby increasing frequency sensitivity. For the first time to our knowledge, we will analyze the oscillator phase noise when operating near the locking boundaries by means of a perturbation formulation in the frequency domain. The methods will be illustrated through their application to a cubic-nonlinearity oscillator, enabling a deep theoretical insight, and to a realistic transistor-based oscillator with the MUT placed on top of a capacitive transmission line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Microwave Theory and Techniques
IEEE Transactions on Microwave Theory and Techniques 工程技术-工程:电子与电气
CiteScore
8.60
自引率
18.60%
发文量
486
审稿时长
6 months
期刊介绍: The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信