{"title":"无基单、双向电磁吸波器的设计与验证","authors":"Zhen Tan;Jianjia Yi;Jian-Xin Chen;Shah Nawaz Burokur","doi":"10.1109/TMTT.2025.3576268","DOIUrl":null,"url":null,"abstract":"In this article, a design methodology for groundless metagrating absorbers is proposed. By strategically arranging sub wavelength microstrip capacitors in series with chip resistors on the upper and lower layers of a dielectric substrate, uni- or bi-directional electromagnetic absorption can be effectively realized at a desired operating frequency. The entire design process is based on a fully analytical derivation, with clear mathematical theory, and is applicable across a broad range of frequencies, including microwave, millimeter-wave, and even terahertz bands. The full-wave simulation results of the proposed uni- and bi-directional absorbers show excellent agreement with theoretical calculations, validating the efficacy of the methodology. Additionally, for the bi-directional absorber, a prototype operating around 10 GHz is fabricated and measured, with experimental results aligning well with the simulated ones. Compared to other grounded metamaterial/metasurface absorbers, the proposed groundless structure offers adaptability in terms of conformability, making it more suitable for practical applications. This enhanced conformability suggests a promising potential for the future application of external electromagnetic stealth and internal electromagnetic compatibility.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 9","pages":"5748-5764"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Validation of Groundless Uni- and Bi-Directional Electromagnetic Absorbers Using Lossy Metagratings\",\"authors\":\"Zhen Tan;Jianjia Yi;Jian-Xin Chen;Shah Nawaz Burokur\",\"doi\":\"10.1109/TMTT.2025.3576268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a design methodology for groundless metagrating absorbers is proposed. By strategically arranging sub wavelength microstrip capacitors in series with chip resistors on the upper and lower layers of a dielectric substrate, uni- or bi-directional electromagnetic absorption can be effectively realized at a desired operating frequency. The entire design process is based on a fully analytical derivation, with clear mathematical theory, and is applicable across a broad range of frequencies, including microwave, millimeter-wave, and even terahertz bands. The full-wave simulation results of the proposed uni- and bi-directional absorbers show excellent agreement with theoretical calculations, validating the efficacy of the methodology. Additionally, for the bi-directional absorber, a prototype operating around 10 GHz is fabricated and measured, with experimental results aligning well with the simulated ones. Compared to other grounded metamaterial/metasurface absorbers, the proposed groundless structure offers adaptability in terms of conformability, making it more suitable for practical applications. This enhanced conformability suggests a promising potential for the future application of external electromagnetic stealth and internal electromagnetic compatibility.\",\"PeriodicalId\":13272,\"journal\":{\"name\":\"IEEE Transactions on Microwave Theory and Techniques\",\"volume\":\"73 9\",\"pages\":\"5748-5764\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Microwave Theory and Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11080657/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11080657/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and Validation of Groundless Uni- and Bi-Directional Electromagnetic Absorbers Using Lossy Metagratings
In this article, a design methodology for groundless metagrating absorbers is proposed. By strategically arranging sub wavelength microstrip capacitors in series with chip resistors on the upper and lower layers of a dielectric substrate, uni- or bi-directional electromagnetic absorption can be effectively realized at a desired operating frequency. The entire design process is based on a fully analytical derivation, with clear mathematical theory, and is applicable across a broad range of frequencies, including microwave, millimeter-wave, and even terahertz bands. The full-wave simulation results of the proposed uni- and bi-directional absorbers show excellent agreement with theoretical calculations, validating the efficacy of the methodology. Additionally, for the bi-directional absorber, a prototype operating around 10 GHz is fabricated and measured, with experimental results aligning well with the simulated ones. Compared to other grounded metamaterial/metasurface absorbers, the proposed groundless structure offers adaptability in terms of conformability, making it more suitable for practical applications. This enhanced conformability suggests a promising potential for the future application of external electromagnetic stealth and internal electromagnetic compatibility.
期刊介绍:
The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.