基于学习的双向通信:算法框架与比较分析

IF 4.4 3区 计算机科学 Q2 TELECOMMUNICATIONS
David R. Nickel;Anindya Bijoy Das;David J. Love;Christopher G. Brinton
{"title":"基于学习的双向通信:算法框架与比较分析","authors":"David R. Nickel;Anindya Bijoy Das;David J. Love;Christopher G. Brinton","doi":"10.1109/LCOMM.2025.3588133","DOIUrl":null,"url":null,"abstract":"Machine learning (ML)-based feedback channel coding has garnered significant research interest in the past few years. However, there has been limited research exploring ML approaches in the so-called “two-way” setting where two users jointly encode messages and feedback over a shared channel. In this work, we present a general architecture for ML-based two-way feedback coding, and show how several popular one-way schemes can be converted to the two-way setting through our algorithmic framework. We compare such schemes against one-way counterparts, revealing error-rate benefits of ML-based two-way coding in certain signal-to-noise ratio (SNR) regimes. We then analyze the tradeoffs between error performance and computational overhead for three state-of-the-art neural network coding models instantiated in the two-way paradigm.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 9","pages":"2133-2137"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-Based Two-Way Communications: Algorithmic Framework and Comparative Analysis\",\"authors\":\"David R. Nickel;Anindya Bijoy Das;David J. Love;Christopher G. Brinton\",\"doi\":\"10.1109/LCOMM.2025.3588133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML)-based feedback channel coding has garnered significant research interest in the past few years. However, there has been limited research exploring ML approaches in the so-called “two-way” setting where two users jointly encode messages and feedback over a shared channel. In this work, we present a general architecture for ML-based two-way feedback coding, and show how several popular one-way schemes can be converted to the two-way setting through our algorithmic framework. We compare such schemes against one-way counterparts, revealing error-rate benefits of ML-based two-way coding in certain signal-to-noise ratio (SNR) regimes. We then analyze the tradeoffs between error performance and computational overhead for three state-of-the-art neural network coding models instantiated in the two-way paradigm.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 9\",\"pages\":\"2133-2137\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11078395/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11078395/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于机器学习(ML)的反馈信道编码在过去几年中引起了很大的研究兴趣。然而,在所谓的“双向”设置中探索机器学习方法的研究有限,即两个用户在共享通道上共同编码消息和反馈。在这项工作中,我们提出了基于ml的双向反馈编码的通用架构,并展示了如何通过我们的算法框架将几种流行的单向方案转换为双向设置。我们将这些方案与单向方案进行比较,揭示了在某些信噪比(SNR)制度下基于ml的双向编码的错误率优势。然后,我们分析了在双向范式中实例化的三种最先进的神经网络编码模型的错误性能和计算开销之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-Based Two-Way Communications: Algorithmic Framework and Comparative Analysis
Machine learning (ML)-based feedback channel coding has garnered significant research interest in the past few years. However, there has been limited research exploring ML approaches in the so-called “two-way” setting where two users jointly encode messages and feedback over a shared channel. In this work, we present a general architecture for ML-based two-way feedback coding, and show how several popular one-way schemes can be converted to the two-way setting through our algorithmic framework. We compare such schemes against one-way counterparts, revealing error-rate benefits of ML-based two-way coding in certain signal-to-noise ratio (SNR) regimes. We then analyze the tradeoffs between error performance and computational overhead for three state-of-the-art neural network coding models instantiated in the two-way paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信