生理传感器技术在工作量估算中的应用综述

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Christian Tamantini;Maria Laura Cristofanelli;Francesca Fracasso;Alessandro Umbrico;Gabriella Cortellessa;Andrea Orlandini;Francesca Cordella
{"title":"生理传感器技术在工作量估算中的应用综述","authors":"Christian Tamantini;Maria Laura Cristofanelli;Francesca Fracasso;Alessandro Umbrico;Gabriella Cortellessa;Andrea Orlandini;Francesca Cordella","doi":"10.1109/JSEN.2025.3597329","DOIUrl":null,"url":null,"abstract":"Workload estimation is essential for artificial systems designed to assist users across various domains. These systems can provide personalized support by continuously assessing the user’s state and optimizing intervention strategies. Physiological data acquisition through advanced sensors enables objective and real-time workload estimation, offering a more reliable alternative to self-reported measures. Despite the growing interest in workload estimation, existing literature reviews are often domain-specific or focus on cognitive workload only, without providing a comprehensive analysis of methodologies for estimating both physical and cognitive workload across different applications. To address this gap, this systematic review analyzes 35 studies on multimodal physiological monitoring, examining feature extraction methodologies and supervised learning models used for workload estimation. The review identifies key challenges, including the need for standardized protocols, improved generalization across real-world scenarios, and the integration of adaptive artificial intelligence models. It underscores the role of sensor-based workload estimation in healthcare, rehabilitation, and assistive technologies, positioning it as a fundamental component for developing intelligent, user-centered, and adaptive human–machine interaction systems.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"34298-34310"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11126940","citationCount":"0","resultStr":"{\"title\":\"Physiological Sensor Technologies in Workload Estimation: A Review\",\"authors\":\"Christian Tamantini;Maria Laura Cristofanelli;Francesca Fracasso;Alessandro Umbrico;Gabriella Cortellessa;Andrea Orlandini;Francesca Cordella\",\"doi\":\"10.1109/JSEN.2025.3597329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Workload estimation is essential for artificial systems designed to assist users across various domains. These systems can provide personalized support by continuously assessing the user’s state and optimizing intervention strategies. Physiological data acquisition through advanced sensors enables objective and real-time workload estimation, offering a more reliable alternative to self-reported measures. Despite the growing interest in workload estimation, existing literature reviews are often domain-specific or focus on cognitive workload only, without providing a comprehensive analysis of methodologies for estimating both physical and cognitive workload across different applications. To address this gap, this systematic review analyzes 35 studies on multimodal physiological monitoring, examining feature extraction methodologies and supervised learning models used for workload estimation. The review identifies key challenges, including the need for standardized protocols, improved generalization across real-world scenarios, and the integration of adaptive artificial intelligence models. It underscores the role of sensor-based workload estimation in healthcare, rehabilitation, and assistive technologies, positioning it as a fundamental component for developing intelligent, user-centered, and adaptive human–machine interaction systems.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 18\",\"pages\":\"34298-34310\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11126940\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11126940/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11126940/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

工作量估算对于旨在帮助不同领域的用户的人工系统是必不可少的。这些系统可以通过持续评估用户的状态和优化干预策略来提供个性化支持。通过先进的传感器采集生理数据,可以实现客观和实时的工作量估计,为自我报告的测量提供更可靠的替代方案。尽管对工作量估计的兴趣越来越大,但现有的文献综述通常是特定于领域的,或者只关注认知工作量,而没有对跨不同应用程序评估物理和认知工作量的方法进行全面的分析。为了解决这一差距,本系统综述分析了35项关于多模态生理监测的研究,检查了用于工作量估计的特征提取方法和监督学习模型。该评估确定了关键挑战,包括对标准化协议的需求,对现实世界场景的改进泛化以及自适应人工智能模型的集成。它强调了基于传感器的工作负载估计在医疗保健、康复和辅助技术中的作用,将其定位为开发智能、以用户为中心和自适应人机交互系统的基本组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physiological Sensor Technologies in Workload Estimation: A Review
Workload estimation is essential for artificial systems designed to assist users across various domains. These systems can provide personalized support by continuously assessing the user’s state and optimizing intervention strategies. Physiological data acquisition through advanced sensors enables objective and real-time workload estimation, offering a more reliable alternative to self-reported measures. Despite the growing interest in workload estimation, existing literature reviews are often domain-specific or focus on cognitive workload only, without providing a comprehensive analysis of methodologies for estimating both physical and cognitive workload across different applications. To address this gap, this systematic review analyzes 35 studies on multimodal physiological monitoring, examining feature extraction methodologies and supervised learning models used for workload estimation. The review identifies key challenges, including the need for standardized protocols, improved generalization across real-world scenarios, and the integration of adaptive artificial intelligence models. It underscores the role of sensor-based workload estimation in healthcare, rehabilitation, and assistive technologies, positioning it as a fundamental component for developing intelligent, user-centered, and adaptive human–machine interaction systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信