阐明基于反射的核心-体光容积图对姿势和呼吸变化的反应性

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Afra Nawar;Onur S. Kilic;Farhan N. Rahman;Chuoqi Chen;John A. Berkebile;Michael Chan;Amit J. Shah;Omer T. Inan
{"title":"阐明基于反射的核心-体光容积图对姿势和呼吸变化的反应性","authors":"Afra Nawar;Onur S. Kilic;Farhan N. Rahman;Chuoqi Chen;John A. Berkebile;Michael Chan;Amit J. Shah;Omer T. Inan","doi":"10.1109/JSEN.2025.3596522","DOIUrl":null,"url":null,"abstract":"At-home cardiovascular monitoring has become widespread with the commercialization of the photoplethysmogram (PPG) in wearable devices. A tremendous opportunity for comprehensive monitoring of chronotropic, inotropic, and vascular characteristics of the cardiovascular system can be unlocked if PPG data are combined with signals of other modalities at the core body. However, little is known about the quality of core-body PPG or its reactivity to environmental conditions. To elucidate core-body PPG signals, we compared the reactivity and quality of sternum and back PPG signals to finger-based PPG in 24 healthy participants during a protocol with posture and breathing changes. We found that the signal quality of core-body PPG was affected by body location, wavelength, LED/photodiode configuration, posture, and breathing pattern. Notably, reflectance-mode red-wavelength core-body quality was less than that of transmittance-mode finger red-wavelength PPG (<inline-formula> <tex-math>${p}~\\lt 0.05$ </tex-math></inline-formula>). However, green-wavelength core-body PPG quality was comparable (<inline-formula> <tex-math>${p}~\\gt 0.05$ </tex-math></inline-formula>, sternum) or significantly greater (<inline-formula> <tex-math>${p}~\\lt 0.001$ </tex-math></inline-formula>, back). We also found that PPG amplitude reactivity for core-body signals was in accordance with that of the finger (<inline-formula> <tex-math>${p}~\\gt 0.05$ </tex-math></inline-formula> or <inline-formula> <tex-math>${p}~\\lt 0.05$ </tex-math></inline-formula>, sign(<inline-formula> <tex-math>$\\mu _{\\text {core}}$ </tex-math></inline-formula>) = sign(<inline-formula> <tex-math>$\\mu _{\\text {periphery}}$ </tex-math></inline-formula>)) for posture changes but opposite (<inline-formula> <tex-math>${p}~\\lt 0.05$ </tex-math></inline-formula>, sign(<inline-formula> <tex-math>$\\mu _{\\text {core}}$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\neq $ </tex-math></inline-formula> sign(<inline-formula> <tex-math>$\\mu _{\\text {periphery}}$ </tex-math></inline-formula>)) or significantly blunted (<inline-formula> <tex-math>${p}~\\lt 0.05$ </tex-math></inline-formula>, sign(<inline-formula> <tex-math>$\\mu _{\\text {core}}$ </tex-math></inline-formula>) = sign(<inline-formula> <tex-math>$\\mu _{\\text {periphery}}$ </tex-math></inline-formula>), abs(<inline-formula> <tex-math>$\\mu _{\\text {core}}$ </tex-math></inline-formula>) < abs(<inline-formula> <tex-math>$\\mu _{\\text {periphery}}$ </tex-math></inline-formula>)) during deep and resistive breathing. We, thus, demonstrate the importance of studying the reactivity of vasculature at different sensor locations, as their reactivity to various provocations is heterogeneous. Our findings can be used to develop improved hardware for sensing core-body PPG and algorithms for interpreting the signals acquired, enabling clinicians to more comprehensively understand patient cardiovascular health.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"35447-35459"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the Reactivity of Reflectance-Based Core-Body Photoplethysmogram to Posture and Respiratory Changes\",\"authors\":\"Afra Nawar;Onur S. Kilic;Farhan N. Rahman;Chuoqi Chen;John A. Berkebile;Michael Chan;Amit J. Shah;Omer T. Inan\",\"doi\":\"10.1109/JSEN.2025.3596522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At-home cardiovascular monitoring has become widespread with the commercialization of the photoplethysmogram (PPG) in wearable devices. A tremendous opportunity for comprehensive monitoring of chronotropic, inotropic, and vascular characteristics of the cardiovascular system can be unlocked if PPG data are combined with signals of other modalities at the core body. However, little is known about the quality of core-body PPG or its reactivity to environmental conditions. To elucidate core-body PPG signals, we compared the reactivity and quality of sternum and back PPG signals to finger-based PPG in 24 healthy participants during a protocol with posture and breathing changes. We found that the signal quality of core-body PPG was affected by body location, wavelength, LED/photodiode configuration, posture, and breathing pattern. Notably, reflectance-mode red-wavelength core-body quality was less than that of transmittance-mode finger red-wavelength PPG (<inline-formula> <tex-math>${p}~\\\\lt 0.05$ </tex-math></inline-formula>). However, green-wavelength core-body PPG quality was comparable (<inline-formula> <tex-math>${p}~\\\\gt 0.05$ </tex-math></inline-formula>, sternum) or significantly greater (<inline-formula> <tex-math>${p}~\\\\lt 0.001$ </tex-math></inline-formula>, back). We also found that PPG amplitude reactivity for core-body signals was in accordance with that of the finger (<inline-formula> <tex-math>${p}~\\\\gt 0.05$ </tex-math></inline-formula> or <inline-formula> <tex-math>${p}~\\\\lt 0.05$ </tex-math></inline-formula>, sign(<inline-formula> <tex-math>$\\\\mu _{\\\\text {core}}$ </tex-math></inline-formula>) = sign(<inline-formula> <tex-math>$\\\\mu _{\\\\text {periphery}}$ </tex-math></inline-formula>)) for posture changes but opposite (<inline-formula> <tex-math>${p}~\\\\lt 0.05$ </tex-math></inline-formula>, sign(<inline-formula> <tex-math>$\\\\mu _{\\\\text {core}}$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\\\neq $ </tex-math></inline-formula> sign(<inline-formula> <tex-math>$\\\\mu _{\\\\text {periphery}}$ </tex-math></inline-formula>)) or significantly blunted (<inline-formula> <tex-math>${p}~\\\\lt 0.05$ </tex-math></inline-formula>, sign(<inline-formula> <tex-math>$\\\\mu _{\\\\text {core}}$ </tex-math></inline-formula>) = sign(<inline-formula> <tex-math>$\\\\mu _{\\\\text {periphery}}$ </tex-math></inline-formula>), abs(<inline-formula> <tex-math>$\\\\mu _{\\\\text {core}}$ </tex-math></inline-formula>) < abs(<inline-formula> <tex-math>$\\\\mu _{\\\\text {periphery}}$ </tex-math></inline-formula>)) during deep and resistive breathing. We, thus, demonstrate the importance of studying the reactivity of vasculature at different sensor locations, as their reactivity to various provocations is heterogeneous. Our findings can be used to develop improved hardware for sensing core-body PPG and algorithms for interpreting the signals acquired, enabling clinicians to more comprehensively understand patient cardiovascular health.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 18\",\"pages\":\"35447-35459\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11123627/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11123627/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着光电容积脉搏图(PPG)在可穿戴设备中的商业化,家庭心血管监测已经变得普遍。如果PPG数据与核心体其他模式的信号相结合,将为心血管系统的变时性、肌力和血管特征的综合监测提供巨大的机会。然而,对核心体PPG的质量及其对环境条件的反应性知之甚少。为了阐明核心-体PPG信号,我们比较了24名健康参与者在姿势和呼吸改变的过程中胸骨和背部PPG信号与手指PPG信号的反应性和质量。我们发现核心-体PPG的信号质量受身体位置、波长、LED/光电二极管配置、姿势和呼吸方式的影响。值得注意的是,反射模式红波长核心体质量低于透射模式指红波长PPG (${p}~\lt 0.05$)。然而,绿波长核心-体PPG质量相当(${p}~\gt 0.05$,胸骨)或显著更高(${p}~\lt 0.001$,背部)。我们还发现,对于姿势变化,核心-身体信号的PPG振幅反应性与手指一致(${p}~\gt 0.05$或${p}~\lt 0.05$, sign($\mu _{\text {core}}$) = sign($\mu _{\text {periphery}}$)),而相反(${p}~\lt 0.05$, sign($\mu _{\text {core}}$) $\neq $ sign($\mu _{\text {periphery}}$))或明显减弱(${p}~\lt 0.05$, sign($\mu _{\text {core}}$) = sign($\mu _{\text {periphery}}$)。腹肌($\mu _{\text {core}}$) < Abs ($\mu _{\text {periphery}}$))在深呼吸和阻力呼吸时。因此,我们证明了研究血管系统在不同传感器位置的反应性的重要性,因为它们对各种刺激的反应性是异质的。我们的研究结果可用于开发改进的硬件来感知核心-体PPG和算法来解释所获得的信号,使临床医生能够更全面地了解患者的心血管健康状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidating the Reactivity of Reflectance-Based Core-Body Photoplethysmogram to Posture and Respiratory Changes
At-home cardiovascular monitoring has become widespread with the commercialization of the photoplethysmogram (PPG) in wearable devices. A tremendous opportunity for comprehensive monitoring of chronotropic, inotropic, and vascular characteristics of the cardiovascular system can be unlocked if PPG data are combined with signals of other modalities at the core body. However, little is known about the quality of core-body PPG or its reactivity to environmental conditions. To elucidate core-body PPG signals, we compared the reactivity and quality of sternum and back PPG signals to finger-based PPG in 24 healthy participants during a protocol with posture and breathing changes. We found that the signal quality of core-body PPG was affected by body location, wavelength, LED/photodiode configuration, posture, and breathing pattern. Notably, reflectance-mode red-wavelength core-body quality was less than that of transmittance-mode finger red-wavelength PPG ( ${p}~\lt 0.05$ ). However, green-wavelength core-body PPG quality was comparable ( ${p}~\gt 0.05$ , sternum) or significantly greater ( ${p}~\lt 0.001$ , back). We also found that PPG amplitude reactivity for core-body signals was in accordance with that of the finger ( ${p}~\gt 0.05$ or ${p}~\lt 0.05$ , sign( $\mu _{\text {core}}$ ) = sign( $\mu _{\text {periphery}}$ )) for posture changes but opposite ( ${p}~\lt 0.05$ , sign( $\mu _{\text {core}}$ ) $\neq $ sign( $\mu _{\text {periphery}}$ )) or significantly blunted ( ${p}~\lt 0.05$ , sign( $\mu _{\text {core}}$ ) = sign( $\mu _{\text {periphery}}$ ), abs( $\mu _{\text {core}}$ ) < abs( $\mu _{\text {periphery}}$ )) during deep and resistive breathing. We, thus, demonstrate the importance of studying the reactivity of vasculature at different sensor locations, as their reactivity to various provocations is heterogeneous. Our findings can be used to develop improved hardware for sensing core-body PPG and algorithms for interpreting the signals acquired, enabling clinicians to more comprehensively understand patient cardiovascular health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信