Rafael Ribeiro;Alexandre Valle de Carvalho;Nelson Bilber Rodrigues
{"title":"使用深度学习的基于图像的视频游戏资产生成和评估:方法和应用的系统回顾","authors":"Rafael Ribeiro;Alexandre Valle de Carvalho;Nelson Bilber Rodrigues","doi":"10.1109/TG.2024.3487054","DOIUrl":null,"url":null,"abstract":"Creating content for digital video game is an expensive segment of the development process, and many techniques have been explored to automate it. Much of the generated content is graphical, ranging from textures and sprites to typographical elements and user interfaces. Numerous techniques have been explored to automate the generation of these assets, with recent advancements incorporating artificial intelligence methodologies, such as deep learning generative models. This study comprehensively surveys the literature from 2016 onward, focusing on using machine learning to generate image-based assets for video game development, reviewing the deep learning approaches employed, and analyzing the specific challenges found. Specifically, the deep learning approaches employed, the problems addressed within the domain, and the metrics used for evaluating the results. The study demonstrates a knowledge gap in generative methods for some types of video game assets. In addition, applicability and effectiveness of the most used evaluation metrics in the literature are studied. As future research prospects, with the increase in popularity of generative AI, the adoption of such techniques will be seen in automation processes.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"17 3","pages":"622-630"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736668","citationCount":"0","resultStr":"{\"title\":\"Image-Based Video Game Asset Generation and Evaluation Using Deep Learning: A Systematic Review of Methods and Applications\",\"authors\":\"Rafael Ribeiro;Alexandre Valle de Carvalho;Nelson Bilber Rodrigues\",\"doi\":\"10.1109/TG.2024.3487054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating content for digital video game is an expensive segment of the development process, and many techniques have been explored to automate it. Much of the generated content is graphical, ranging from textures and sprites to typographical elements and user interfaces. Numerous techniques have been explored to automate the generation of these assets, with recent advancements incorporating artificial intelligence methodologies, such as deep learning generative models. This study comprehensively surveys the literature from 2016 onward, focusing on using machine learning to generate image-based assets for video game development, reviewing the deep learning approaches employed, and analyzing the specific challenges found. Specifically, the deep learning approaches employed, the problems addressed within the domain, and the metrics used for evaluating the results. The study demonstrates a knowledge gap in generative methods for some types of video game assets. In addition, applicability and effectiveness of the most used evaluation metrics in the literature are studied. As future research prospects, with the increase in popularity of generative AI, the adoption of such techniques will be seen in automation processes.\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"17 3\",\"pages\":\"622-630\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736668\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10736668/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10736668/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Image-Based Video Game Asset Generation and Evaluation Using Deep Learning: A Systematic Review of Methods and Applications
Creating content for digital video game is an expensive segment of the development process, and many techniques have been explored to automate it. Much of the generated content is graphical, ranging from textures and sprites to typographical elements and user interfaces. Numerous techniques have been explored to automate the generation of these assets, with recent advancements incorporating artificial intelligence methodologies, such as deep learning generative models. This study comprehensively surveys the literature from 2016 onward, focusing on using machine learning to generate image-based assets for video game development, reviewing the deep learning approaches employed, and analyzing the specific challenges found. Specifically, the deep learning approaches employed, the problems addressed within the domain, and the metrics used for evaluating the results. The study demonstrates a knowledge gap in generative methods for some types of video game assets. In addition, applicability and effectiveness of the most used evaluation metrics in the literature are studied. As future research prospects, with the increase in popularity of generative AI, the adoption of such techniques will be seen in automation processes.