准固态凝胶电解质中的准三层有机粘土实现了Li+的定向传输和阴离子捕获

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-17 DOI:10.1021/acsnano.5c10468
Young Gyun Choi, , , Jongkyoung Kim, , , Chanui Park, , , Jin Il Jang, , , Sangdeok Kim, , , Hyoseok Kim, , , Hyung Min Kim, , , Won Bo Lee*, , , Seungho Cho*, , and , Jong Hyeok Park*, 
{"title":"准固态凝胶电解质中的准三层有机粘土实现了Li+的定向传输和阴离子捕获","authors":"Young Gyun Choi,&nbsp;, ,&nbsp;Jongkyoung Kim,&nbsp;, ,&nbsp;Chanui Park,&nbsp;, ,&nbsp;Jin Il Jang,&nbsp;, ,&nbsp;Sangdeok Kim,&nbsp;, ,&nbsp;Hyoseok Kim,&nbsp;, ,&nbsp;Hyung Min Kim,&nbsp;, ,&nbsp;Won Bo Lee*,&nbsp;, ,&nbsp;Seungho Cho*,&nbsp;, and ,&nbsp;Jong Hyeok Park*,&nbsp;","doi":"10.1021/acsnano.5c10468","DOIUrl":null,"url":null,"abstract":"<p >Enhancing Li<sup>+</sup> transport while ensuring safety is crucial for the development of high-energy density batteries. While nanomaterials boost ionic conductivity in quasi-solid state gel electrolyte (QSE), the transport mechanisms remain unclear. This study presents a synthetic strategy utilizing tailored two-dimensional saponite clay additives with a controlled organic cation configuration to achieve superior Li-ion conductivity in QSE. This optimized configuration enables rapid, uniform Li<sup>+</sup> movement through controlled interlayers and effective anion trapping within aligned surfactant domains. Consequently, a pseudo-trilayer configuration of organoclay serves as a fast Li<sup>+</sup> transport pathway in the QSE, leading to a high Li<sup>+</sup> transference number of 0.71 and stable cycling performance for 1000 h. Moreover, batteries utilizing the pseudo-trilayer organoclay demonstrate compatibility with the LiNi<sub>0.9</sub>Mn<sub>0.05</sub>Co<sub>0.05</sub>O<sub>2</sub> cathode, maintaining 86.7% capacity retention after 200 cycles. This work suggests a design strategy for advanced QSE that precisely controls the Li<sup>+</sup> transport route, contributing to a high energy density with minimal additives.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 38","pages":"34136–34149"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-trilayer Organoclay Enables Directed Li+ Transport and Anion Trapping in Quasi-Solid-State Gel Electrolytes\",\"authors\":\"Young Gyun Choi,&nbsp;, ,&nbsp;Jongkyoung Kim,&nbsp;, ,&nbsp;Chanui Park,&nbsp;, ,&nbsp;Jin Il Jang,&nbsp;, ,&nbsp;Sangdeok Kim,&nbsp;, ,&nbsp;Hyoseok Kim,&nbsp;, ,&nbsp;Hyung Min Kim,&nbsp;, ,&nbsp;Won Bo Lee*,&nbsp;, ,&nbsp;Seungho Cho*,&nbsp;, and ,&nbsp;Jong Hyeok Park*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c10468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Enhancing Li<sup>+</sup> transport while ensuring safety is crucial for the development of high-energy density batteries. While nanomaterials boost ionic conductivity in quasi-solid state gel electrolyte (QSE), the transport mechanisms remain unclear. This study presents a synthetic strategy utilizing tailored two-dimensional saponite clay additives with a controlled organic cation configuration to achieve superior Li-ion conductivity in QSE. This optimized configuration enables rapid, uniform Li<sup>+</sup> movement through controlled interlayers and effective anion trapping within aligned surfactant domains. Consequently, a pseudo-trilayer configuration of organoclay serves as a fast Li<sup>+</sup> transport pathway in the QSE, leading to a high Li<sup>+</sup> transference number of 0.71 and stable cycling performance for 1000 h. Moreover, batteries utilizing the pseudo-trilayer organoclay demonstrate compatibility with the LiNi<sub>0.9</sub>Mn<sub>0.05</sub>Co<sub>0.05</sub>O<sub>2</sub> cathode, maintaining 86.7% capacity retention after 200 cycles. This work suggests a design strategy for advanced QSE that precisely controls the Li<sup>+</sup> transport route, contributing to a high energy density with minimal additives.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 38\",\"pages\":\"34136–34149\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c10468\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c10468","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在保证安全的同时加强锂离子的运输是发展高能量密度电池的关键。虽然纳米材料提高了准固态凝胶电解质(QSE)中的离子电导率,但其传输机制尚不清楚。本研究提出了一种合成策略,利用定制的二维皂土添加剂和受控的有机阳离子配置,在QSE中实现优越的锂离子电导率。这种优化的结构使Li+能够快速、均匀地通过受控的中间层,并在排列的表面活性剂区域内有效地捕获阴离子。因此,有机粘土的伪三层结构作为QSE中Li+的快速传输途径,导致了0.71的高Li+转移数和1000 h的稳定循环性能。此外,使用伪三层有机粘土的电池与LiNi0.9Mn0.05Co0.05O2阴极具有相容性,在200次循环后保持86.7%的容量保留率。这项工作提出了一种先进的QSE设计策略,可以精确控制Li+的传输路线,以最少的添加剂实现高能量密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pseudo-trilayer Organoclay Enables Directed Li+ Transport and Anion Trapping in Quasi-Solid-State Gel Electrolytes

Pseudo-trilayer Organoclay Enables Directed Li+ Transport and Anion Trapping in Quasi-Solid-State Gel Electrolytes

Pseudo-trilayer Organoclay Enables Directed Li+ Transport and Anion Trapping in Quasi-Solid-State Gel Electrolytes

Enhancing Li+ transport while ensuring safety is crucial for the development of high-energy density batteries. While nanomaterials boost ionic conductivity in quasi-solid state gel electrolyte (QSE), the transport mechanisms remain unclear. This study presents a synthetic strategy utilizing tailored two-dimensional saponite clay additives with a controlled organic cation configuration to achieve superior Li-ion conductivity in QSE. This optimized configuration enables rapid, uniform Li+ movement through controlled interlayers and effective anion trapping within aligned surfactant domains. Consequently, a pseudo-trilayer configuration of organoclay serves as a fast Li+ transport pathway in the QSE, leading to a high Li+ transference number of 0.71 and stable cycling performance for 1000 h. Moreover, batteries utilizing the pseudo-trilayer organoclay demonstrate compatibility with the LiNi0.9Mn0.05Co0.05O2 cathode, maintaining 86.7% capacity retention after 200 cycles. This work suggests a design strategy for advanced QSE that precisely controls the Li+ transport route, contributing to a high energy density with minimal additives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信