{"title":"靶向溶菌酶2在心内膜通过调节远程损伤信号促进快速恢复","authors":"Chenghao Fan, Shen Song, Yu Han, Dongcheng Cai, Anteng Shi, Fangfang Wan, Jie Feng, Jiajun Zhong, Yifan Xie, Fei Xu, Jiangping Song, Shengshou Hu, Yu Nie, Hui Zhang","doi":"10.1016/j.stem.2025.08.015","DOIUrl":null,"url":null,"abstract":"Adult mammalian hearts are non-regenerative, and a majority of studies examining repair and potential regeneration post-myocardial infarction (MI) have focused on cardiomyocyte (CM) proliferation and infarcted zones. Here, we observed aberrantly high expression of lysozyme 2 (<em>Lyz2</em>) in injured mouse hearts at both local injury sites and at remote zones, with sustained <em>Lyz2</em> expression conspicuous in endocardial cells of non-regenerative hearts. Although traditionally conceptualized as a myeloid marker, we demonstrate that LYZ2 functions as an injury-specific, positive regulator of lysosomal degradation capacity that mediates pathogenic degradation of the extracellular matrix. We observed an anti-apoptotic benefit to CMs upon disrupting LYZ2/LYZ function in mice and in a human endomyocardium experimental model. Harnessing these insights, we show that both <em>Lyz2</em> knockout (KO) and pharmacological inhibition of lysosomal degradation confer rapid functional recovery in injured non-regenerative hearts. Thus, targeting a remote injury response in a non-CM cell type rapidly promotes post-MI recovery of non-regenerative hearts.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"37 1","pages":""},"PeriodicalIF":20.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting lysozyme 2 in endocardium promotes rapid recovery by modulating remote injury signals\",\"authors\":\"Chenghao Fan, Shen Song, Yu Han, Dongcheng Cai, Anteng Shi, Fangfang Wan, Jie Feng, Jiajun Zhong, Yifan Xie, Fei Xu, Jiangping Song, Shengshou Hu, Yu Nie, Hui Zhang\",\"doi\":\"10.1016/j.stem.2025.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adult mammalian hearts are non-regenerative, and a majority of studies examining repair and potential regeneration post-myocardial infarction (MI) have focused on cardiomyocyte (CM) proliferation and infarcted zones. Here, we observed aberrantly high expression of lysozyme 2 (<em>Lyz2</em>) in injured mouse hearts at both local injury sites and at remote zones, with sustained <em>Lyz2</em> expression conspicuous in endocardial cells of non-regenerative hearts. Although traditionally conceptualized as a myeloid marker, we demonstrate that LYZ2 functions as an injury-specific, positive regulator of lysosomal degradation capacity that mediates pathogenic degradation of the extracellular matrix. We observed an anti-apoptotic benefit to CMs upon disrupting LYZ2/LYZ function in mice and in a human endomyocardium experimental model. Harnessing these insights, we show that both <em>Lyz2</em> knockout (KO) and pharmacological inhibition of lysosomal degradation confer rapid functional recovery in injured non-regenerative hearts. Thus, targeting a remote injury response in a non-CM cell type rapidly promotes post-MI recovery of non-regenerative hearts.\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":20.4000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2025.08.015\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.08.015","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Targeting lysozyme 2 in endocardium promotes rapid recovery by modulating remote injury signals
Adult mammalian hearts are non-regenerative, and a majority of studies examining repair and potential regeneration post-myocardial infarction (MI) have focused on cardiomyocyte (CM) proliferation and infarcted zones. Here, we observed aberrantly high expression of lysozyme 2 (Lyz2) in injured mouse hearts at both local injury sites and at remote zones, with sustained Lyz2 expression conspicuous in endocardial cells of non-regenerative hearts. Although traditionally conceptualized as a myeloid marker, we demonstrate that LYZ2 functions as an injury-specific, positive regulator of lysosomal degradation capacity that mediates pathogenic degradation of the extracellular matrix. We observed an anti-apoptotic benefit to CMs upon disrupting LYZ2/LYZ function in mice and in a human endomyocardium experimental model. Harnessing these insights, we show that both Lyz2 knockout (KO) and pharmacological inhibition of lysosomal degradation confer rapid functional recovery in injured non-regenerative hearts. Thus, targeting a remote injury response in a non-CM cell type rapidly promotes post-MI recovery of non-regenerative hearts.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.