Jie Wang, Yi Xiong, Yujie Wei, Bangge Yang, Shaocong Ren, Yijing Huang, Chongfa Cai
{"title":"土壤扰动深度对土壤侵蚀和溶质流失过程变化的影响","authors":"Jie Wang, Yi Xiong, Yujie Wei, Bangge Yang, Shaocong Ren, Yijing Huang, Chongfa Cai","doi":"10.1002/ldr.70103","DOIUrl":null,"url":null,"abstract":"Soil erosion‐induced solute loss contributes to nonpoint source pollution (NPS). Existing NPS models employ a static effective mixing depth (<jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub>) for multi‐scale solute loss prediction, while fundamentally neglecting both the governing role of runoff layer depth (<jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub>) in solute transport dynamics and the spatiotemporally dynamic nature of <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> itself. Bromide (<jats:italic>Br</jats:italic>) has high solubility and low reactivity; therefore, this study employed Br as the solute, with KMnO<jats:sub>4</jats:sub> and Br tracer methods used to quantitatively determine the dynamic variations of <jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> (0.04–0.59 cm) and <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> (0.08–10.35 cm) under varying rainfall intensities (60, 90, and 120 mm h<jats:sup>−1</jats:sup>) and overland flow rates (0, 1, and 2 L min<jats:sup>−1</jats:sup>). The investigation focused on elucidating the effects of soil disturbed depth (<jats:italic>D</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>, comprising <jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> and <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub>) on soil erosion and solute loss processes. Additionally, runoff coefficient (<jats:italic>R</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub>), sediment concentration (<jats:italic>C</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>), sediment yield rate (<jats:italic>S</jats:italic><jats:sub><jats:italic>y</jats:italic></jats:sub>), <jats:italic>Br</jats:italic> concentration in runoff (<jats:italic>C</jats:italic><jats:sub><jats:italic>Br</jats:italic></jats:sub>), <jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub>, and <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> were determined at 2‐or 3‐min intervals. The power function effectively captures the temporal dynamics of <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> and <jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> during rainfall processes. Significant differences were observed in soil erosion (including runoff initiation and sediment yield) and solute loss processes across different <jats:italic>D</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub> (<jats:italic>F</jats:italic> > 3, <jats:italic>p</jats:italic> < 0.01). <jats:italic>S</jats:italic><jats:sub><jats:italic>y</jats:italic></jats:sub>, <jats:italic>C</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>, and <jats:italic>C</jats:italic><jats:sub><jats:italic>Br</jats:italic></jats:sub> demonstrated increasing trends with rising <jats:italic>D</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>, though the magnitude of these increases varied across different <jats:italic>D</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub> (<jats:italic>R</jats:italic><jats:sup><jats:italic>2</jats:italic></jats:sup><jats:sub>adj</jats:sub> > 0.55). Furthermore, a notable linear correlation was identified between cumulative runoff generation, sediment yield, bromide loss, and mean <jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> and <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> (<jats:italic>R</jats:italic><jats:sup><jats:italic>2</jats:italic></jats:sup><jats:sub>adj</jats:sub> > 0.75). Collectively, <jats:italic>D</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub> accounted for 64.9% and 46.2% of the variation in soil erosion and <jats:italic>Br</jats:italic> loss, respectively. These findings enable optimized NPS modeling and tillage practices to mitigate nonpoint source pollution.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"29 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of Soil Disturbed Depth on Variations in Soil Erosion and Solute Loss Processes\",\"authors\":\"Jie Wang, Yi Xiong, Yujie Wei, Bangge Yang, Shaocong Ren, Yijing Huang, Chongfa Cai\",\"doi\":\"10.1002/ldr.70103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil erosion‐induced solute loss contributes to nonpoint source pollution (NPS). Existing NPS models employ a static effective mixing depth (<jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub>) for multi‐scale solute loss prediction, while fundamentally neglecting both the governing role of runoff layer depth (<jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub>) in solute transport dynamics and the spatiotemporally dynamic nature of <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> itself. Bromide (<jats:italic>Br</jats:italic>) has high solubility and low reactivity; therefore, this study employed Br as the solute, with KMnO<jats:sub>4</jats:sub> and Br tracer methods used to quantitatively determine the dynamic variations of <jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> (0.04–0.59 cm) and <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> (0.08–10.35 cm) under varying rainfall intensities (60, 90, and 120 mm h<jats:sup>−1</jats:sup>) and overland flow rates (0, 1, and 2 L min<jats:sup>−1</jats:sup>). The investigation focused on elucidating the effects of soil disturbed depth (<jats:italic>D</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>, comprising <jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> and <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub>) on soil erosion and solute loss processes. Additionally, runoff coefficient (<jats:italic>R</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub>), sediment concentration (<jats:italic>C</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>), sediment yield rate (<jats:italic>S</jats:italic><jats:sub><jats:italic>y</jats:italic></jats:sub>), <jats:italic>Br</jats:italic> concentration in runoff (<jats:italic>C</jats:italic><jats:sub><jats:italic>Br</jats:italic></jats:sub>), <jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub>, and <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> were determined at 2‐or 3‐min intervals. The power function effectively captures the temporal dynamics of <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> and <jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> during rainfall processes. Significant differences were observed in soil erosion (including runoff initiation and sediment yield) and solute loss processes across different <jats:italic>D</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub> (<jats:italic>F</jats:italic> > 3, <jats:italic>p</jats:italic> < 0.01). <jats:italic>S</jats:italic><jats:sub><jats:italic>y</jats:italic></jats:sub>, <jats:italic>C</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>, and <jats:italic>C</jats:italic><jats:sub><jats:italic>Br</jats:italic></jats:sub> demonstrated increasing trends with rising <jats:italic>D</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>, though the magnitude of these increases varied across different <jats:italic>D</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub> (<jats:italic>R</jats:italic><jats:sup><jats:italic>2</jats:italic></jats:sup><jats:sub>adj</jats:sub> > 0.55). Furthermore, a notable linear correlation was identified between cumulative runoff generation, sediment yield, bromide loss, and mean <jats:italic>D</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> and <jats:italic>D</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> (<jats:italic>R</jats:italic><jats:sup><jats:italic>2</jats:italic></jats:sup><jats:sub>adj</jats:sub> > 0.75). Collectively, <jats:italic>D</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub> accounted for 64.9% and 46.2% of the variation in soil erosion and <jats:italic>Br</jats:italic> loss, respectively. These findings enable optimized NPS modeling and tillage practices to mitigate nonpoint source pollution.\",\"PeriodicalId\":203,\"journal\":{\"name\":\"Land Degradation & Development\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land Degradation & Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/ldr.70103\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.70103","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
土壤侵蚀引起的溶质流失是造成非点源污染的主要原因之一。现有的NPS模型采用静态有效混合深度(De)进行多尺度溶质损失预测,而从根本上忽略了径流层深度(Dr)在溶质输运动力学中的控制作用以及De本身的时空动态性质。溴(Br)具有高溶解度和低反应性;因此,本研究以Br为溶质,利用KMnO4和Br示踪剂方法定量测定了不同降雨强度(60、90和120 mm h−1)和坡面流速(0、1和2 L min−1)下Dr (0.04-0.59 cm)和De (0.08-10.35 cm)的动态变化。研究的重点是阐明土壤扰动深度(Ds,包括Dr和De)对土壤侵蚀和溶质流失过程的影响。此外,径流系数(Rc)、泥沙浓度(Cs)、产沙率(Sy)、径流中Br浓度(CBr)、Dr和De的测定间隔为2 -或3 - min。幂函数有效地捕捉降水过程中De和Dr的时间动态。土壤侵蚀(包括径流起始和产沙量)和溶质流失过程在不同Ds间存在显著差异(F > 3, p < 0.01)。Sy、Cs和CBr随Ds的增加呈增加趋势,尽管这些增加的幅度在不同Ds之间存在差异(R2adj > 0.55)。此外,累积产流、产沙量、溴化物损失量与平均Dr和De之间存在显著的线性相关(R2adj > 0.75)。Ds对土壤侵蚀和Br损失的贡献率分别为64.9%和46.2%。这些发现有助于优化NPS模型和耕作实践,以减轻非点源污染。
Impacts of Soil Disturbed Depth on Variations in Soil Erosion and Solute Loss Processes
Soil erosion‐induced solute loss contributes to nonpoint source pollution (NPS). Existing NPS models employ a static effective mixing depth (De) for multi‐scale solute loss prediction, while fundamentally neglecting both the governing role of runoff layer depth (Dr) in solute transport dynamics and the spatiotemporally dynamic nature of De itself. Bromide (Br) has high solubility and low reactivity; therefore, this study employed Br as the solute, with KMnO4 and Br tracer methods used to quantitatively determine the dynamic variations of Dr (0.04–0.59 cm) and De (0.08–10.35 cm) under varying rainfall intensities (60, 90, and 120 mm h−1) and overland flow rates (0, 1, and 2 L min−1). The investigation focused on elucidating the effects of soil disturbed depth (Ds, comprising Dr and De) on soil erosion and solute loss processes. Additionally, runoff coefficient (Rc), sediment concentration (Cs), sediment yield rate (Sy), Br concentration in runoff (CBr), Dr, and De were determined at 2‐or 3‐min intervals. The power function effectively captures the temporal dynamics of De and Dr during rainfall processes. Significant differences were observed in soil erosion (including runoff initiation and sediment yield) and solute loss processes across different Ds (F > 3, p < 0.01). Sy, Cs, and CBr demonstrated increasing trends with rising Ds, though the magnitude of these increases varied across different Ds (R2adj > 0.55). Furthermore, a notable linear correlation was identified between cumulative runoff generation, sediment yield, bromide loss, and mean Dr and De (R2adj > 0.75). Collectively, Ds accounted for 64.9% and 46.2% of the variation in soil erosion and Br loss, respectively. These findings enable optimized NPS modeling and tillage practices to mitigate nonpoint source pollution.
期刊介绍:
Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on:
- what land degradation is;
- what causes land degradation;
- the impacts of land degradation
- the scale of land degradation;
- the history, current status or future trends of land degradation;
- avoidance, mitigation and control of land degradation;
- remedial actions to rehabilitate or restore degraded land;
- sustainable land management.