David Sánchez‐Porras, Miguel Etayo‐Escanilla, José‐Andrés Moreno‐Delgado, María del Mar Lozano‐Martí, Fabiola Bermejo‐Casares, Miguel Alaminos, Jesús Chato‐Astrain, Fernando Campos, M. Carmen Sánchez‐Quevedo, Ricardo Fernández‐Valadés
{"title":"组织工程制备全层人类尿道替代物及体外特性研究","authors":"David Sánchez‐Porras, Miguel Etayo‐Escanilla, José‐Andrés Moreno‐Delgado, María del Mar Lozano‐Martí, Fabiola Bermejo‐Casares, Miguel Alaminos, Jesús Chato‐Astrain, Fernando Campos, M. Carmen Sánchez‐Quevedo, Ricardo Fernández‐Valadés","doi":"10.1002/btm2.70049","DOIUrl":null,"url":null,"abstract":"Tissue engineering may offer efficient alternatives for the surgical repair of severe conditions affecting the human urethra. However, development of tubular full‐thickness substitutes is challenging. In this work, we have generated and evaluated ex vivo a novel full‐thickness human urethra substitute (FHUS) containing its three main layers: the urethral mucosa (UM), the spongy layer (SP), and the tunica albuginea (AL). Results first showed that the generation of a FHUS significantly improved the biomechanical properties of this artificial tissue as compared to the individual layers, although the resistance of the native urethra was not reached. At the structural level, we found that FHUS shared important histological similarities with the native urethra. Analysis of the individual layers showed that UM had a stratified epithelium that expressed several epithelial markers, including cytokeratins CK7 and CK14, uroplakin 1b, and the intercellular junction proteins desmoplakin, tight junction protein 1, and claudin. At the stromal level, UM tended to increase the presence of collagen fibers and versican with time. The SP layer displayed abundant CD31 and CD34‐positive blood vessels, but small amounts of collagen and proteoglycans. The AL layer showed scattered smooth muscle cells expressing α‐smooth muscle actin, smoothelin, and desmin cell markers, and contained low amounts of collagen and proteoglycans. Analysis of the basement membrane components collagen IV and laminin revealed their progressive development with time, especially collagen IV. These results confirm the possibility of developing a partially biomimetic full‐thickness substitute of human urethra that might have potential clinical usefulness for the clinical repair of severe urethral lesions.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation and ex vivo characterization of a full‐thickness substitute of the human urethra by tissue engineering\",\"authors\":\"David Sánchez‐Porras, Miguel Etayo‐Escanilla, José‐Andrés Moreno‐Delgado, María del Mar Lozano‐Martí, Fabiola Bermejo‐Casares, Miguel Alaminos, Jesús Chato‐Astrain, Fernando Campos, M. Carmen Sánchez‐Quevedo, Ricardo Fernández‐Valadés\",\"doi\":\"10.1002/btm2.70049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue engineering may offer efficient alternatives for the surgical repair of severe conditions affecting the human urethra. However, development of tubular full‐thickness substitutes is challenging. In this work, we have generated and evaluated ex vivo a novel full‐thickness human urethra substitute (FHUS) containing its three main layers: the urethral mucosa (UM), the spongy layer (SP), and the tunica albuginea (AL). Results first showed that the generation of a FHUS significantly improved the biomechanical properties of this artificial tissue as compared to the individual layers, although the resistance of the native urethra was not reached. At the structural level, we found that FHUS shared important histological similarities with the native urethra. Analysis of the individual layers showed that UM had a stratified epithelium that expressed several epithelial markers, including cytokeratins CK7 and CK14, uroplakin 1b, and the intercellular junction proteins desmoplakin, tight junction protein 1, and claudin. At the stromal level, UM tended to increase the presence of collagen fibers and versican with time. The SP layer displayed abundant CD31 and CD34‐positive blood vessels, but small amounts of collagen and proteoglycans. The AL layer showed scattered smooth muscle cells expressing α‐smooth muscle actin, smoothelin, and desmin cell markers, and contained low amounts of collagen and proteoglycans. Analysis of the basement membrane components collagen IV and laminin revealed their progressive development with time, especially collagen IV. These results confirm the possibility of developing a partially biomimetic full‐thickness substitute of human urethra that might have potential clinical usefulness for the clinical repair of severe urethral lesions.\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btm2.70049\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.70049","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Generation and ex vivo characterization of a full‐thickness substitute of the human urethra by tissue engineering
Tissue engineering may offer efficient alternatives for the surgical repair of severe conditions affecting the human urethra. However, development of tubular full‐thickness substitutes is challenging. In this work, we have generated and evaluated ex vivo a novel full‐thickness human urethra substitute (FHUS) containing its three main layers: the urethral mucosa (UM), the spongy layer (SP), and the tunica albuginea (AL). Results first showed that the generation of a FHUS significantly improved the biomechanical properties of this artificial tissue as compared to the individual layers, although the resistance of the native urethra was not reached. At the structural level, we found that FHUS shared important histological similarities with the native urethra. Analysis of the individual layers showed that UM had a stratified epithelium that expressed several epithelial markers, including cytokeratins CK7 and CK14, uroplakin 1b, and the intercellular junction proteins desmoplakin, tight junction protein 1, and claudin. At the stromal level, UM tended to increase the presence of collagen fibers and versican with time. The SP layer displayed abundant CD31 and CD34‐positive blood vessels, but small amounts of collagen and proteoglycans. The AL layer showed scattered smooth muscle cells expressing α‐smooth muscle actin, smoothelin, and desmin cell markers, and contained low amounts of collagen and proteoglycans. Analysis of the basement membrane components collagen IV and laminin revealed their progressive development with time, especially collagen IV. These results confirm the possibility of developing a partially biomimetic full‐thickness substitute of human urethra that might have potential clinical usefulness for the clinical repair of severe urethral lesions.
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.