{"title":"一种通过自噬激活和肿瘤微环境调节联合光动力免疫治疗的新型AIE光敏剂","authors":"De-rong Wang, Xian-li Ma, Jing-jing Li, Cheng-kun Li, Qian Li, Fang-yao Li","doi":"10.1016/j.ejmech.2025.118155","DOIUrl":null,"url":null,"abstract":"<div><div>The limited efficacy of cancer immunotherapy is often attributed to insufficient tumor immunogenicity and the presence of an immunosuppressive tumor microenvironment (ITM). To address these challenges, we developed a novel photosensitizer (PS), <strong>TTVBO-1MT</strong>, by conjugating the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor 1-methyl-<span>d</span>-tryptophan (1-MT) to the aggregation-induced emission (AIE) PS <strong>TTVBO</strong> via a glutathione (GSH)-responsive linker. Comprehensive <em>in vitro</em> and <em>in vivo</em> evaluations using a model of triple-negative breast cancer revealed that <strong>TTVBO-1MT</strong> exhibited potent antitumor activity. Mechanistic studies demonstrated that <strong>TTVBO-1MT</strong> mediated photoimmunotherapy through dual mechanisms involving autophagy induction and IDO1 inhibition. The photodynamic effect led to the induction of immunogenic cell death (ICD), while the glutathione-responsive release of 1-MT suppressed IDO1 activity, decreased Foxp3 expression, and reduced regulatory T cell (Treg) populations, thereby mitigating immunosuppression. This combined effect promoted T-cell infiltration and triggered a systemic antitumor immune response. Overall, the results suggest that <strong>TTVBO-1MT</strong> enables autophagy-assisted immuno-photodynamic modulation of the tumor microenvironment (TME), offering significant therapeutic potential.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"300 ","pages":"Article 118155"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel AIE photosensitizer for combination photodynamic immunotherapy via autophagy activation and tumor microenvironment modulation\",\"authors\":\"De-rong Wang, Xian-li Ma, Jing-jing Li, Cheng-kun Li, Qian Li, Fang-yao Li\",\"doi\":\"10.1016/j.ejmech.2025.118155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The limited efficacy of cancer immunotherapy is often attributed to insufficient tumor immunogenicity and the presence of an immunosuppressive tumor microenvironment (ITM). To address these challenges, we developed a novel photosensitizer (PS), <strong>TTVBO-1MT</strong>, by conjugating the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor 1-methyl-<span>d</span>-tryptophan (1-MT) to the aggregation-induced emission (AIE) PS <strong>TTVBO</strong> via a glutathione (GSH)-responsive linker. Comprehensive <em>in vitro</em> and <em>in vivo</em> evaluations using a model of triple-negative breast cancer revealed that <strong>TTVBO-1MT</strong> exhibited potent antitumor activity. Mechanistic studies demonstrated that <strong>TTVBO-1MT</strong> mediated photoimmunotherapy through dual mechanisms involving autophagy induction and IDO1 inhibition. The photodynamic effect led to the induction of immunogenic cell death (ICD), while the glutathione-responsive release of 1-MT suppressed IDO1 activity, decreased Foxp3 expression, and reduced regulatory T cell (Treg) populations, thereby mitigating immunosuppression. This combined effect promoted T-cell infiltration and triggered a systemic antitumor immune response. Overall, the results suggest that <strong>TTVBO-1MT</strong> enables autophagy-assisted immuno-photodynamic modulation of the tumor microenvironment (TME), offering significant therapeutic potential.</div></div>\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"300 \",\"pages\":\"Article 118155\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0223523425009201\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523425009201","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
A novel AIE photosensitizer for combination photodynamic immunotherapy via autophagy activation and tumor microenvironment modulation
The limited efficacy of cancer immunotherapy is often attributed to insufficient tumor immunogenicity and the presence of an immunosuppressive tumor microenvironment (ITM). To address these challenges, we developed a novel photosensitizer (PS), TTVBO-1MT, by conjugating the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor 1-methyl-d-tryptophan (1-MT) to the aggregation-induced emission (AIE) PS TTVBO via a glutathione (GSH)-responsive linker. Comprehensive in vitro and in vivo evaluations using a model of triple-negative breast cancer revealed that TTVBO-1MT exhibited potent antitumor activity. Mechanistic studies demonstrated that TTVBO-1MT mediated photoimmunotherapy through dual mechanisms involving autophagy induction and IDO1 inhibition. The photodynamic effect led to the induction of immunogenic cell death (ICD), while the glutathione-responsive release of 1-MT suppressed IDO1 activity, decreased Foxp3 expression, and reduced regulatory T cell (Treg) populations, thereby mitigating immunosuppression. This combined effect promoted T-cell infiltration and triggered a systemic antitumor immune response. Overall, the results suggest that TTVBO-1MT enables autophagy-assisted immuno-photodynamic modulation of the tumor microenvironment (TME), offering significant therapeutic potential.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.