热释电-光热协同作用动态调节Ag-BiOI/BiOIO3-Nx异质结的界面电场以增强抗生素降解

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Xiaobao Chen , Meng Liu , Yu Liu , Sijian Liu , Xiaoping Li , Zonghan Huang , Lanxuan Wen , Rongwei Li , Shengjiong Yang , Dahu Ding , Bo Wang , Rongzhi Chen
{"title":"热释电-光热协同作用动态调节Ag-BiOI/BiOIO3-Nx异质结的界面电场以增强抗生素降解","authors":"Xiaobao Chen ,&nbsp;Meng Liu ,&nbsp;Yu Liu ,&nbsp;Sijian Liu ,&nbsp;Xiaoping Li ,&nbsp;Zonghan Huang ,&nbsp;Lanxuan Wen ,&nbsp;Rongwei Li ,&nbsp;Shengjiong Yang ,&nbsp;Dahu Ding ,&nbsp;Bo Wang ,&nbsp;Rongzhi Chen","doi":"10.1016/j.jcat.2025.116434","DOIUrl":null,"url":null,"abstract":"<div><div>Although the static interfacial electric field (IEF) within the heterojunction enables directional photocharge transfer, the accumulated carriers shield the space charge region (SCR), thereby hindering photocharge separation. To address this, we introduce a dynamic IEF modulation strategy via Pyroelectric–photothermal synergy in Ag-BiOI/BiOIO<sub>3</sub>-N<em><sub>x</sub></em> heterojunctions (ABBN<em><sub>x</sub></em>), which effectively enhances the photocharge separation and photocatalytic activity. Specifically, the reaction rate constant (0.0179 min<sup>−1</sup>) for tetracycline (TC) degradation and photocurrent density (9.03 uA/cm<sup>2</sup>) of ABBN<sub>2</sub> were 2.67 and 2.91 times higher than those of pristine BiOIO<sub>3</sub>, respectively. Experimental findings demonstrated that the surface plasmon resonance (SPR) of Ag nanoparticles markedly improved photothermal conversion efficiency, while N doping in the BiOIO<sub>3</sub> lattice increased the polarization effect of IO<sub>3</sub> pyramids, thereby boosting pyroelectric performance. The heat generated by Ag nanoparticles through photothermal conversion induces a transient polarization electric field in BiOIO<sub>3</sub>-N<em><sub>x</sub></em>, which effectively disrupts the charge balance in the SCR, and thus ensures the continuous separation of photocharges by IEF. This work offers new insights into antibiotic wastewater treatment and the dynamic modulation of the IEF structure in photocatalytic systems.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"452 ","pages":"Article 116434"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyroelectric–photothermal synergy dynamically modulates interfacial electric field in Ag-BiOI/BiOIO3-Nx heterojunctions for enhanced antibiotic degradation\",\"authors\":\"Xiaobao Chen ,&nbsp;Meng Liu ,&nbsp;Yu Liu ,&nbsp;Sijian Liu ,&nbsp;Xiaoping Li ,&nbsp;Zonghan Huang ,&nbsp;Lanxuan Wen ,&nbsp;Rongwei Li ,&nbsp;Shengjiong Yang ,&nbsp;Dahu Ding ,&nbsp;Bo Wang ,&nbsp;Rongzhi Chen\",\"doi\":\"10.1016/j.jcat.2025.116434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although the static interfacial electric field (IEF) within the heterojunction enables directional photocharge transfer, the accumulated carriers shield the space charge region (SCR), thereby hindering photocharge separation. To address this, we introduce a dynamic IEF modulation strategy via Pyroelectric–photothermal synergy in Ag-BiOI/BiOIO<sub>3</sub>-N<em><sub>x</sub></em> heterojunctions (ABBN<em><sub>x</sub></em>), which effectively enhances the photocharge separation and photocatalytic activity. Specifically, the reaction rate constant (0.0179 min<sup>−1</sup>) for tetracycline (TC) degradation and photocurrent density (9.03 uA/cm<sup>2</sup>) of ABBN<sub>2</sub> were 2.67 and 2.91 times higher than those of pristine BiOIO<sub>3</sub>, respectively. Experimental findings demonstrated that the surface plasmon resonance (SPR) of Ag nanoparticles markedly improved photothermal conversion efficiency, while N doping in the BiOIO<sub>3</sub> lattice increased the polarization effect of IO<sub>3</sub> pyramids, thereby boosting pyroelectric performance. The heat generated by Ag nanoparticles through photothermal conversion induces a transient polarization electric field in BiOIO<sub>3</sub>-N<em><sub>x</sub></em>, which effectively disrupts the charge balance in the SCR, and thus ensures the continuous separation of photocharges by IEF. This work offers new insights into antibiotic wastewater treatment and the dynamic modulation of the IEF structure in photocatalytic systems.</div></div>\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":\"452 \",\"pages\":\"Article 116434\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021951725005007\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951725005007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管异质结内的静态界面电场(IEF)能够实现定向光电荷转移,但积累的载流子屏蔽了空间电荷区(SCR),从而阻碍了光电荷分离。为了解决这个问题,我们在Ag-BiOI/BiOIO3-Nx异质结(ABBNx)中引入了一种通过热释电-光热协同作用的动态IEF调制策略,该策略有效地提高了光电荷分离和光催化活性。其中,ABBN2降解四环素(TC)的反应速率常数(0.0179 min−1)和光电流密度(9.03 uA/cm2)分别是原始biio3的2.67倍和2.91倍。实验结果表明,Ag纳米粒子的表面等离子体共振(SPR)显著提高了光热转换效率,而在BiOIO3晶格中掺杂N增加了IO3金字塔的极化效应,从而提高了热释电性能。Ag纳米粒子通过光热转换产生的热量在BiOIO3-Nx中诱导出瞬态极化电场,有效地破坏了可控硅中的电荷平衡,从而保证了IEF对光电荷的连续分离。这项工作为抗生素废水处理和光催化系统中IEF结构的动态调节提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pyroelectric–photothermal synergy dynamically modulates interfacial electric field in Ag-BiOI/BiOIO3-Nx heterojunctions for enhanced antibiotic degradation

Pyroelectric–photothermal synergy dynamically modulates interfacial electric field in Ag-BiOI/BiOIO3-Nx heterojunctions for enhanced antibiotic degradation

Pyroelectric–photothermal synergy dynamically modulates interfacial electric field in Ag-BiOI/BiOIO3-Nx heterojunctions for enhanced antibiotic degradation
Although the static interfacial electric field (IEF) within the heterojunction enables directional photocharge transfer, the accumulated carriers shield the space charge region (SCR), thereby hindering photocharge separation. To address this, we introduce a dynamic IEF modulation strategy via Pyroelectric–photothermal synergy in Ag-BiOI/BiOIO3-Nx heterojunctions (ABBNx), which effectively enhances the photocharge separation and photocatalytic activity. Specifically, the reaction rate constant (0.0179 min−1) for tetracycline (TC) degradation and photocurrent density (9.03 uA/cm2) of ABBN2 were 2.67 and 2.91 times higher than those of pristine BiOIO3, respectively. Experimental findings demonstrated that the surface plasmon resonance (SPR) of Ag nanoparticles markedly improved photothermal conversion efficiency, while N doping in the BiOIO3 lattice increased the polarization effect of IO3 pyramids, thereby boosting pyroelectric performance. The heat generated by Ag nanoparticles through photothermal conversion induces a transient polarization electric field in BiOIO3-Nx, which effectively disrupts the charge balance in the SCR, and thus ensures the continuous separation of photocharges by IEF. This work offers new insights into antibiotic wastewater treatment and the dynamic modulation of the IEF structure in photocatalytic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信