用于超宽范围非接触式温度传感的光磁双模稀土基金属-有机框架

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhizhuo Gu, Jiaxin Cui, Liaokuo Gong, Lian Xia, Fengli Qu
{"title":"用于超宽范围非接触式温度传感的光磁双模稀土基金属-有机框架","authors":"Zhizhuo Gu, Jiaxin Cui, Liaokuo Gong, Lian Xia, Fengli Qu","doi":"10.1021/acsami.5c14769","DOIUrl":null,"url":null,"abstract":"With the rapid advancement of modern technology, particularly microelectronics and the Internet of Things (IoT), noncontact thermometry that offers high sensitivity and accuracy, especially under extreme conditions and across a wide temperature range, is desirable yet remains a challenge. In this study, we developed an innovative Ln-MOF-based thermometer integrating fluorescence and magnetism, achieving precise, noncontact temperature sensing across an ultrawide range of 2–483 K. Magnetic susceptibility dominates at low temperatures, while fluorescence intensity and lifetime govern high-temperature sensing, presenting high sensitivity (9.18%.K<sup>–1</sup>) and low uncertainty (0.04 K) across the entire temperature range. DFT calculations reveal that Eu<sup>3</sup><sup>+</sup> doping reconstructs the electronic structure, narrowing the bandgap and facilitating thermally activated energy transfer from Tb<sup>3</sup><sup>+</sup> to Eu<sup>3</sup><sup>+</sup>. This underlies the temperature-dependent emission color shift from green to red. The Ln-MOF exhibits excellent thermal stability and sensing performance, offering a promising platform for remote temperature monitoring in extreme environments.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"78 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rare Earth-Based Metal–Organic Frameworks with Photomagnetic Dual-Mode for Ultrawide Range Noncontact Temperature Sensing\",\"authors\":\"Zhizhuo Gu, Jiaxin Cui, Liaokuo Gong, Lian Xia, Fengli Qu\",\"doi\":\"10.1021/acsami.5c14769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid advancement of modern technology, particularly microelectronics and the Internet of Things (IoT), noncontact thermometry that offers high sensitivity and accuracy, especially under extreme conditions and across a wide temperature range, is desirable yet remains a challenge. In this study, we developed an innovative Ln-MOF-based thermometer integrating fluorescence and magnetism, achieving precise, noncontact temperature sensing across an ultrawide range of 2–483 K. Magnetic susceptibility dominates at low temperatures, while fluorescence intensity and lifetime govern high-temperature sensing, presenting high sensitivity (9.18%.K<sup>–1</sup>) and low uncertainty (0.04 K) across the entire temperature range. DFT calculations reveal that Eu<sup>3</sup><sup>+</sup> doping reconstructs the electronic structure, narrowing the bandgap and facilitating thermally activated energy transfer from Tb<sup>3</sup><sup>+</sup> to Eu<sup>3</sup><sup>+</sup>. This underlies the temperature-dependent emission color shift from green to red. The Ln-MOF exhibits excellent thermal stability and sensing performance, offering a promising platform for remote temperature monitoring in extreme environments.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c14769\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c14769","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着现代技术的快速发展,特别是微电子技术和物联网(IoT),提供高灵敏度和精度的非接触式测温,特别是在极端条件下和宽温度范围内,是可取的,但仍然是一个挑战。在这项研究中,我们开发了一种创新的基于mn - mof的温度计,集成了荧光和磁性,在2-483 K的超宽范围内实现了精确的非接触式温度传感。在低温下磁化率占主导地位,而荧光强度和寿命决定了高温传感,在整个温度范围内具有高灵敏度(9.18%.K-1)和低不确定度(0.04 K)。DFT计算表明,掺杂Eu3+重构了电子结构,缩小了带隙,促进了Tb3+向Eu3+的热激活能转移。这是温度依赖性发射颜色从绿色变为红色的基础。Ln-MOF具有优异的热稳定性和传感性能,为极端环境下的远程温度监测提供了一个有前景的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rare Earth-Based Metal–Organic Frameworks with Photomagnetic Dual-Mode for Ultrawide Range Noncontact Temperature Sensing

Rare Earth-Based Metal–Organic Frameworks with Photomagnetic Dual-Mode for Ultrawide Range Noncontact Temperature Sensing
With the rapid advancement of modern technology, particularly microelectronics and the Internet of Things (IoT), noncontact thermometry that offers high sensitivity and accuracy, especially under extreme conditions and across a wide temperature range, is desirable yet remains a challenge. In this study, we developed an innovative Ln-MOF-based thermometer integrating fluorescence and magnetism, achieving precise, noncontact temperature sensing across an ultrawide range of 2–483 K. Magnetic susceptibility dominates at low temperatures, while fluorescence intensity and lifetime govern high-temperature sensing, presenting high sensitivity (9.18%.K–1) and low uncertainty (0.04 K) across the entire temperature range. DFT calculations reveal that Eu3+ doping reconstructs the electronic structure, narrowing the bandgap and facilitating thermally activated energy transfer from Tb3+ to Eu3+. This underlies the temperature-dependent emission color shift from green to red. The Ln-MOF exhibits excellent thermal stability and sensing performance, offering a promising platform for remote temperature monitoring in extreme environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信