{"title":"PlaneRecTR++:用于关节三维平面重建和姿态估计的统一查询学习。","authors":"Jingjia Shi,Shuaifeng Zhi,Kai Xu","doi":"10.1109/tpami.2025.3610500","DOIUrl":null,"url":null,"abstract":"3D plane reconstruction from images can usually be divided into several sub-tasks of plane detection, segmentation, parameters regression and possibly depth prediction for per-frame, along with plane correspondence and relative camera pose estimation between frames. Previous works tend to divide and conquer these sub-tasks with distinct network modules, overall formulated by a two-stage paradigm. With an initial camera pose and per-frame plane predictions provided from the first stage, exclusively designed modules, potentially relying on extra plane correspondence labelling, are applied to merge multi-view plane entities and produce 6DoF camera pose. As none of existing works manage to integrate above closely related sub-tasks into a unified framework but treat them separately and sequentially, we suspect it potentially as a main source of performance limitation for existing approaches. Motivated by this finding and the success of query-based learning in enriching reasoning among semantic entities, in this paper, we propose PlaneRecTR++, a Transformer-based architecture, which for the first time unifies all sub-tasks related to multi-view reconstruction and pose estimation with a compact single-stage model, refraining from initial pose estimation and plane correspondence supervision. Extensive quantitative and qualitative experiments demonstrate that our proposed unified learning achieves mutual benefits across sub-tasks, obtaining a new state-of-the-art performance on public ScanNetv1, ScanNetv2, NYUv2-Plane, and MatterPort3D datasets.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"9 1","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PlaneRecTR++: Unified Query Learning for Joint 3D Planar Reconstruction and Pose Estimation.\",\"authors\":\"Jingjia Shi,Shuaifeng Zhi,Kai Xu\",\"doi\":\"10.1109/tpami.2025.3610500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D plane reconstruction from images can usually be divided into several sub-tasks of plane detection, segmentation, parameters regression and possibly depth prediction for per-frame, along with plane correspondence and relative camera pose estimation between frames. Previous works tend to divide and conquer these sub-tasks with distinct network modules, overall formulated by a two-stage paradigm. With an initial camera pose and per-frame plane predictions provided from the first stage, exclusively designed modules, potentially relying on extra plane correspondence labelling, are applied to merge multi-view plane entities and produce 6DoF camera pose. As none of existing works manage to integrate above closely related sub-tasks into a unified framework but treat them separately and sequentially, we suspect it potentially as a main source of performance limitation for existing approaches. Motivated by this finding and the success of query-based learning in enriching reasoning among semantic entities, in this paper, we propose PlaneRecTR++, a Transformer-based architecture, which for the first time unifies all sub-tasks related to multi-view reconstruction and pose estimation with a compact single-stage model, refraining from initial pose estimation and plane correspondence supervision. Extensive quantitative and qualitative experiments demonstrate that our proposed unified learning achieves mutual benefits across sub-tasks, obtaining a new state-of-the-art performance on public ScanNetv1, ScanNetv2, NYUv2-Plane, and MatterPort3D datasets.\",\"PeriodicalId\":13426,\"journal\":{\"name\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tpami.2025.3610500\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tpami.2025.3610500","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
PlaneRecTR++: Unified Query Learning for Joint 3D Planar Reconstruction and Pose Estimation.
3D plane reconstruction from images can usually be divided into several sub-tasks of plane detection, segmentation, parameters regression and possibly depth prediction for per-frame, along with plane correspondence and relative camera pose estimation between frames. Previous works tend to divide and conquer these sub-tasks with distinct network modules, overall formulated by a two-stage paradigm. With an initial camera pose and per-frame plane predictions provided from the first stage, exclusively designed modules, potentially relying on extra plane correspondence labelling, are applied to merge multi-view plane entities and produce 6DoF camera pose. As none of existing works manage to integrate above closely related sub-tasks into a unified framework but treat them separately and sequentially, we suspect it potentially as a main source of performance limitation for existing approaches. Motivated by this finding and the success of query-based learning in enriching reasoning among semantic entities, in this paper, we propose PlaneRecTR++, a Transformer-based architecture, which for the first time unifies all sub-tasks related to multi-view reconstruction and pose estimation with a compact single-stage model, refraining from initial pose estimation and plane correspondence supervision. Extensive quantitative and qualitative experiments demonstrate that our proposed unified learning achieves mutual benefits across sub-tasks, obtaining a new state-of-the-art performance on public ScanNetv1, ScanNetv2, NYUv2-Plane, and MatterPort3D datasets.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.