揭示可充电镁电池双金属层状阴极层间-层内协同扩散机制。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-16 DOI:10.1021/acsnano.5c10711
Chunxiao Chen, , , Zhen Liang, , , Donggang Tao, , , Daohong Zhang*, , , Yuliang Cao, , , Fei Xu*, , and , Ting Li*, 
{"title":"揭示可充电镁电池双金属层状阴极层间-层内协同扩散机制。","authors":"Chunxiao Chen,&nbsp;, ,&nbsp;Zhen Liang,&nbsp;, ,&nbsp;Donggang Tao,&nbsp;, ,&nbsp;Daohong Zhang*,&nbsp;, ,&nbsp;Yuliang Cao,&nbsp;, ,&nbsp;Fei Xu*,&nbsp;, and ,&nbsp;Ting Li*,&nbsp;","doi":"10.1021/acsnano.5c10711","DOIUrl":null,"url":null,"abstract":"<p >Rechargeable Mg batteries are promising candidates for large-scale energy-storage applications; however, the scarcity of viable cathode materials and sluggish Mg<sup>2+</sup> diffusion kinetics severely hinder their application. While layered compounds exhibit exceptional potential for guest-ion intercalation, existing research predominantly focuses on optimizing intralayer diffusion, with the critical role of interlayer diffusion in Mg-storage remaining underexplored. Herein, two-layered Cu<sub>2</sub>MoS<sub>4</sub>, designated as CMS-L (sole intralayer diffusion channels) and CMS-V (intralayer/interlayer diffusion channels), were synthesized and comparatively evaluated as Mg-storage cathodes. Benefiting from unique three-dimensional ion-transport tunnels, CMS-V delivers superior Mg-storage performance compared to CMS-L, achieving a high reversible capacity of 210 mAh g<sup>–1</sup> at 100 mA g<sup>–1</sup>, excellent rate capability (98 mAh g<sup>–1</sup> at 2 A g<sup>–1</sup>), and outstanding cyclability with 77% capacity retention after 500 cycles. Mechanism analyses reveal Mg<sup>2+</sup> intercalation reactions dominate in both compounds, while the covalent-like nature of the Mo–S bond ensures the structural stability of the MoS<sub>4</sub> cluster during Mg<sup>2+</sup> insertion/extraction. Theoretical computations confirm that the vertically aligned interlayer tunnels in CMS-V significantly reduce diffusion barriers, enabling rapid ion transport via an interlayer–intralayer cooperative diffusion mechanism. This work underscores the importance of multidimensional ion-transport pathway engineering in optimizing Mg-storage kinetics and offers valuable theoretical insights for designing advanced RMB cathode materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 38","pages":"34180–34191"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Interlayer–Intralayer Cooperative Diffusion Mechanism in Bimetallic Layered Cathodes for Rechargeable Magnesium Batteries\",\"authors\":\"Chunxiao Chen,&nbsp;, ,&nbsp;Zhen Liang,&nbsp;, ,&nbsp;Donggang Tao,&nbsp;, ,&nbsp;Daohong Zhang*,&nbsp;, ,&nbsp;Yuliang Cao,&nbsp;, ,&nbsp;Fei Xu*,&nbsp;, and ,&nbsp;Ting Li*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c10711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rechargeable Mg batteries are promising candidates for large-scale energy-storage applications; however, the scarcity of viable cathode materials and sluggish Mg<sup>2+</sup> diffusion kinetics severely hinder their application. While layered compounds exhibit exceptional potential for guest-ion intercalation, existing research predominantly focuses on optimizing intralayer diffusion, with the critical role of interlayer diffusion in Mg-storage remaining underexplored. Herein, two-layered Cu<sub>2</sub>MoS<sub>4</sub>, designated as CMS-L (sole intralayer diffusion channels) and CMS-V (intralayer/interlayer diffusion channels), were synthesized and comparatively evaluated as Mg-storage cathodes. Benefiting from unique three-dimensional ion-transport tunnels, CMS-V delivers superior Mg-storage performance compared to CMS-L, achieving a high reversible capacity of 210 mAh g<sup>–1</sup> at 100 mA g<sup>–1</sup>, excellent rate capability (98 mAh g<sup>–1</sup> at 2 A g<sup>–1</sup>), and outstanding cyclability with 77% capacity retention after 500 cycles. Mechanism analyses reveal Mg<sup>2+</sup> intercalation reactions dominate in both compounds, while the covalent-like nature of the Mo–S bond ensures the structural stability of the MoS<sub>4</sub> cluster during Mg<sup>2+</sup> insertion/extraction. Theoretical computations confirm that the vertically aligned interlayer tunnels in CMS-V significantly reduce diffusion barriers, enabling rapid ion transport via an interlayer–intralayer cooperative diffusion mechanism. This work underscores the importance of multidimensional ion-transport pathway engineering in optimizing Mg-storage kinetics and offers valuable theoretical insights for designing advanced RMB cathode materials.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 38\",\"pages\":\"34180–34191\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c10711\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c10711","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可充电镁电池是大规模储能应用的有希望的候选者;然而,阴极材料的缺乏和Mg2+扩散动力学的缓慢严重阻碍了它们的应用。虽然层状化合物具有特殊的客体离子插入潜力,但现有的研究主要集中在优化层内扩散,而层间扩散在镁储存中的关键作用仍未得到充分探讨。本文合成了两层Cu2MoS4,分别命名为CMS-L(单层层内扩散通道)和CMS-V(层内/层间扩散通道),并对其作为储镁阴极进行了比较评价。得益于独特的三维离子传输隧道,与CMS-L相比,CMS-V提供了卓越的镁存储性能,在100毫安g-1时实现了210毫安g-1的高可逆容量,出色的倍率能力(2毫安g-1时达到98毫安g-1),以及出色的可循环性,在500次循环后保持77%的容量。机理分析表明,在这两种化合物中,Mg2+的嵌入反应是主要的,而Mo-S键的共价键性质确保了Mg2+插入/提取过程中MoS4簇的结构稳定性。理论计算证实,CMS-V中垂直排列的层间隧道显著降低了扩散屏障,使离子通过层间-层内协同扩散机制快速传输。这项工作强调了多维离子传输途径工程在优化镁储存动力学中的重要性,并为设计先进的人民币阴极材料提供了有价值的理论见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the Interlayer–Intralayer Cooperative Diffusion Mechanism in Bimetallic Layered Cathodes for Rechargeable Magnesium Batteries

Unveiling the Interlayer–Intralayer Cooperative Diffusion Mechanism in Bimetallic Layered Cathodes for Rechargeable Magnesium Batteries

Rechargeable Mg batteries are promising candidates for large-scale energy-storage applications; however, the scarcity of viable cathode materials and sluggish Mg2+ diffusion kinetics severely hinder their application. While layered compounds exhibit exceptional potential for guest-ion intercalation, existing research predominantly focuses on optimizing intralayer diffusion, with the critical role of interlayer diffusion in Mg-storage remaining underexplored. Herein, two-layered Cu2MoS4, designated as CMS-L (sole intralayer diffusion channels) and CMS-V (intralayer/interlayer diffusion channels), were synthesized and comparatively evaluated as Mg-storage cathodes. Benefiting from unique three-dimensional ion-transport tunnels, CMS-V delivers superior Mg-storage performance compared to CMS-L, achieving a high reversible capacity of 210 mAh g–1 at 100 mA g–1, excellent rate capability (98 mAh g–1 at 2 A g–1), and outstanding cyclability with 77% capacity retention after 500 cycles. Mechanism analyses reveal Mg2+ intercalation reactions dominate in both compounds, while the covalent-like nature of the Mo–S bond ensures the structural stability of the MoS4 cluster during Mg2+ insertion/extraction. Theoretical computations confirm that the vertically aligned interlayer tunnels in CMS-V significantly reduce diffusion barriers, enabling rapid ion transport via an interlayer–intralayer cooperative diffusion mechanism. This work underscores the importance of multidimensional ion-transport pathway engineering in optimizing Mg-storage kinetics and offers valuable theoretical insights for designing advanced RMB cathode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信