石墨烯在熔融金属表面生长过程中的毛细波驱动动力学。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Kristýna Bukvišová, , , Radek Kalousek, , , Marek Patočka, , , Jakub Zlámal, , , Jakub Planer, , , Vojtěch Mahel, , , Daniel Citterberg, , , Libor Novák, , , Tomáš Šikola, , , Suneel Kodambaka, , and , Miroslav Kolíbal*, 
{"title":"石墨烯在熔融金属表面生长过程中的毛细波驱动动力学。","authors":"Kristýna Bukvišová,&nbsp;, ,&nbsp;Radek Kalousek,&nbsp;, ,&nbsp;Marek Patočka,&nbsp;, ,&nbsp;Jakub Zlámal,&nbsp;, ,&nbsp;Jakub Planer,&nbsp;, ,&nbsp;Vojtěch Mahel,&nbsp;, ,&nbsp;Daniel Citterberg,&nbsp;, ,&nbsp;Libor Novák,&nbsp;, ,&nbsp;Tomáš Šikola,&nbsp;, ,&nbsp;Suneel Kodambaka,&nbsp;, and ,&nbsp;Miroslav Kolíbal*,&nbsp;","doi":"10.1021/acs.jpclett.5c02321","DOIUrl":null,"url":null,"abstract":"<p >Rheotaxy─growth of crystalline layers on molten surfaces─is considered as a promising approach for achieving large-scale monolayers of two-dimensional (2D) materials via seamless stitching of 2D domains during growth on molten metals. However, the mechanisms leading to this process are not well understood. Here, we present in situ microscopic observations of rheotaxy of graphene via chemical vapor deposition on molten gold and copper. We show that the graphene domains undergo translational and rotational motions, leading to self-assembly, during growth on molten metals. Using environmental and ultrahigh vacuum scanning electron microscopy and high-temperature (∼1300 K) atomic force microscopy, coupled with density functional theory and continuum modeling, we suggest that the observed graphene domain dynamics is due to forces arising from capillary waves on the surface of the liquid metal. Our results provide new insights into the mechanisms leading to self-assembly during rheotaxy of 2D layers.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 38","pages":"10020–10026"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5c02321","citationCount":"0","resultStr":"{\"title\":\"Capillary Wave Driven Dynamics of Graphene Domains during Growth on Molten Metals\",\"authors\":\"Kristýna Bukvišová,&nbsp;, ,&nbsp;Radek Kalousek,&nbsp;, ,&nbsp;Marek Patočka,&nbsp;, ,&nbsp;Jakub Zlámal,&nbsp;, ,&nbsp;Jakub Planer,&nbsp;, ,&nbsp;Vojtěch Mahel,&nbsp;, ,&nbsp;Daniel Citterberg,&nbsp;, ,&nbsp;Libor Novák,&nbsp;, ,&nbsp;Tomáš Šikola,&nbsp;, ,&nbsp;Suneel Kodambaka,&nbsp;, and ,&nbsp;Miroslav Kolíbal*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rheotaxy─growth of crystalline layers on molten surfaces─is considered as a promising approach for achieving large-scale monolayers of two-dimensional (2D) materials via seamless stitching of 2D domains during growth on molten metals. However, the mechanisms leading to this process are not well understood. Here, we present in situ microscopic observations of rheotaxy of graphene via chemical vapor deposition on molten gold and copper. We show that the graphene domains undergo translational and rotational motions, leading to self-assembly, during growth on molten metals. Using environmental and ultrahigh vacuum scanning electron microscopy and high-temperature (∼1300 K) atomic force microscopy, coupled with density functional theory and continuum modeling, we suggest that the observed graphene domain dynamics is due to forces arising from capillary waves on the surface of the liquid metal. Our results provide new insights into the mechanisms leading to self-assembly during rheotaxy of 2D layers.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 38\",\"pages\":\"10020–10026\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5c02321\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02321\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02321","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

流变──结晶层在熔融表面的生长──被认为是一种很有前途的方法,可以通过在熔融金属表面生长过程中无缝拼接二维畴来实现大规模的二维(2D)材料单层。然而,导致这一过程的机制尚不清楚。在这里,我们展示了石墨烯通过化学气相沉积在熔融金和铜上的流变的原位显微镜观察。我们发现石墨烯畴在熔融金属上生长时经历平移和旋转运动,导致自组装。利用环境和超高真空扫描电子显微镜以及高温(~ 1300 K)原子力显微镜,结合密度泛函理论和连续统模型,我们认为观察到的石墨烯畴动力学是由于液态金属表面毛细波产生的力所致。我们的研究结果为二维层流变过程中导致自组装的机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capillary Wave Driven Dynamics of Graphene Domains during Growth on Molten Metals

Rheotaxy─growth of crystalline layers on molten surfaces─is considered as a promising approach for achieving large-scale monolayers of two-dimensional (2D) materials via seamless stitching of 2D domains during growth on molten metals. However, the mechanisms leading to this process are not well understood. Here, we present in situ microscopic observations of rheotaxy of graphene via chemical vapor deposition on molten gold and copper. We show that the graphene domains undergo translational and rotational motions, leading to self-assembly, during growth on molten metals. Using environmental and ultrahigh vacuum scanning electron microscopy and high-temperature (∼1300 K) atomic force microscopy, coupled with density functional theory and continuum modeling, we suggest that the observed graphene domain dynamics is due to forces arising from capillary waves on the surface of the liquid metal. Our results provide new insights into the mechanisms leading to self-assembly during rheotaxy of 2D layers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信