Anthony M Joudi,Jonathan K Gurkan,Qianli Liu,Elizabeth M Steinert,Manuel A Torres Acosta,Kathryn A Helmin,Luisa Morales-Nebreda,Nurbek Mambetsariev,Carla Patricia Reyes Flores,Hiam Abdala-Valencia,Samuel E Weinberg,Benjamin D Singer
{"title":"维持DNA甲基化是小鼠病毒性肺炎后诱导Treg修复功能所必需的。","authors":"Anthony M Joudi,Jonathan K Gurkan,Qianli Liu,Elizabeth M Steinert,Manuel A Torres Acosta,Kathryn A Helmin,Luisa Morales-Nebreda,Nurbek Mambetsariev,Carla Patricia Reyes Flores,Hiam Abdala-Valencia,Samuel E Weinberg,Benjamin D Singer","doi":"10.1172/jci192925","DOIUrl":null,"url":null,"abstract":"FOXP3+ natural regulatory T cells (nTregs) promote resolution of inflammation and repair of epithelial damage following viral pneumonia-induced lung injury, thus representing a cellular therapy for patients with severe viral pneumonia and the acute respiratory distress syndrome (ARDS). Whether in vitro induced Tregs (iTregs), which can be rapidly generated in substantial numbers from conventional T cells, also promote lung recovery is unknown. nTregs require specific DNA methylation patterns maintained by the epigenetic regulator, ubiquitin-like with PHD and RING finger domains 1 (UHRF1). Here, we tested whether iTregs promote recovery following viral pneumonia and whether iTregs require UHRF1 for their pro-recovery function. We found that adoptive transfer of iTregs to mice with influenza virus pneumonia promotes lung recovery and that loss of UHRF1-mediated maintenance DNA methylation in iTregs leads to reduced engraftment and a delayed repair response. Transcriptional and DNA methylation profiling of adoptively transferred UHRF1-deficient iTregs that had trafficked to influenza-injured lungs demonstrated transcriptional instability with gain of effector T cell lineage-defining transcription factors. Strategies to promote the stability of iTregs could be leveraged to further augment their pro-recovery function during viral pneumonia and other causes of severe lung injury.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maintenance DNA methylation is required for induced Treg reparative function following viral pneumonia in mice.\",\"authors\":\"Anthony M Joudi,Jonathan K Gurkan,Qianli Liu,Elizabeth M Steinert,Manuel A Torres Acosta,Kathryn A Helmin,Luisa Morales-Nebreda,Nurbek Mambetsariev,Carla Patricia Reyes Flores,Hiam Abdala-Valencia,Samuel E Weinberg,Benjamin D Singer\",\"doi\":\"10.1172/jci192925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FOXP3+ natural regulatory T cells (nTregs) promote resolution of inflammation and repair of epithelial damage following viral pneumonia-induced lung injury, thus representing a cellular therapy for patients with severe viral pneumonia and the acute respiratory distress syndrome (ARDS). Whether in vitro induced Tregs (iTregs), which can be rapidly generated in substantial numbers from conventional T cells, also promote lung recovery is unknown. nTregs require specific DNA methylation patterns maintained by the epigenetic regulator, ubiquitin-like with PHD and RING finger domains 1 (UHRF1). Here, we tested whether iTregs promote recovery following viral pneumonia and whether iTregs require UHRF1 for their pro-recovery function. We found that adoptive transfer of iTregs to mice with influenza virus pneumonia promotes lung recovery and that loss of UHRF1-mediated maintenance DNA methylation in iTregs leads to reduced engraftment and a delayed repair response. Transcriptional and DNA methylation profiling of adoptively transferred UHRF1-deficient iTregs that had trafficked to influenza-injured lungs demonstrated transcriptional instability with gain of effector T cell lineage-defining transcription factors. Strategies to promote the stability of iTregs could be leveraged to further augment their pro-recovery function during viral pneumonia and other causes of severe lung injury.\",\"PeriodicalId\":520097,\"journal\":{\"name\":\"The Journal of Clinical Investigation\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1172/jci192925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci192925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maintenance DNA methylation is required for induced Treg reparative function following viral pneumonia in mice.
FOXP3+ natural regulatory T cells (nTregs) promote resolution of inflammation and repair of epithelial damage following viral pneumonia-induced lung injury, thus representing a cellular therapy for patients with severe viral pneumonia and the acute respiratory distress syndrome (ARDS). Whether in vitro induced Tregs (iTregs), which can be rapidly generated in substantial numbers from conventional T cells, also promote lung recovery is unknown. nTregs require specific DNA methylation patterns maintained by the epigenetic regulator, ubiquitin-like with PHD and RING finger domains 1 (UHRF1). Here, we tested whether iTregs promote recovery following viral pneumonia and whether iTregs require UHRF1 for their pro-recovery function. We found that adoptive transfer of iTregs to mice with influenza virus pneumonia promotes lung recovery and that loss of UHRF1-mediated maintenance DNA methylation in iTregs leads to reduced engraftment and a delayed repair response. Transcriptional and DNA methylation profiling of adoptively transferred UHRF1-deficient iTregs that had trafficked to influenza-injured lungs demonstrated transcriptional instability with gain of effector T cell lineage-defining transcription factors. Strategies to promote the stability of iTregs could be leveraged to further augment their pro-recovery function during viral pneumonia and other causes of severe lung injury.