模拟伴有合并感染的呼吸道病毒传播中的行为改变和疫苗接种。

IF 2.3 4区 数学 Q2 BIOLOGY
Bruno Buonomo, Emanuela Penitente
{"title":"模拟伴有合并感染的呼吸道病毒传播中的行为改变和疫苗接种。","authors":"Bruno Buonomo, Emanuela Penitente","doi":"10.1007/s00285-025-02280-3","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a mathematical model to explore the effects of human behavioural changes on the transmission of two respiratory viruses, where co-infection is possible. The model includes an index to describe the human choices induced by information and rumours regarding the diseases. We first consider the case in which the public health authorities rely only on non-pharmaceutical containment measures and perform a qualitative analysis of the model through bifurcation theory, in order to analyse the existence and stability of both endemic and co-endemic equilibria. We also show the impact of the most relevant information-related parameters on the system dynamics. Then, we extend the model by assuming that a vaccine is available for each of the two viruses. We show how adherence to social distancing may be affected by information and rumours regarding the vaccination coverage in the community. Finally, we investigate the effects of seasonality by introducing a two-state switch function to represent a reduction in both vaccination and transmission rates during the summer season. We found that seasonality causes an increase in the prevalence peaks, suggesting that the detrimental effects due to the reduction of vaccination rates prevail over the beneficial ones due to the reduction of transmission.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 4","pages":"41"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441106/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modelling behavioural changes and vaccination in the transmission of respiratory viruses with co-infection.\",\"authors\":\"Bruno Buonomo, Emanuela Penitente\",\"doi\":\"10.1007/s00285-025-02280-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider a mathematical model to explore the effects of human behavioural changes on the transmission of two respiratory viruses, where co-infection is possible. The model includes an index to describe the human choices induced by information and rumours regarding the diseases. We first consider the case in which the public health authorities rely only on non-pharmaceutical containment measures and perform a qualitative analysis of the model through bifurcation theory, in order to analyse the existence and stability of both endemic and co-endemic equilibria. We also show the impact of the most relevant information-related parameters on the system dynamics. Then, we extend the model by assuming that a vaccine is available for each of the two viruses. We show how adherence to social distancing may be affected by information and rumours regarding the vaccination coverage in the community. Finally, we investigate the effects of seasonality by introducing a two-state switch function to represent a reduction in both vaccination and transmission rates during the summer season. We found that seasonality causes an increase in the prevalence peaks, suggesting that the detrimental effects due to the reduction of vaccination rates prevail over the beneficial ones due to the reduction of transmission.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 4\",\"pages\":\"41\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441106/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02280-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02280-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个数学模型,以探索人类行为变化对两种呼吸道病毒传播的影响,其中合并感染是可能的。该模型包括一个指数,用来描述人们在有关疾病的信息和谣言的诱导下做出的选择。我们首先考虑公共卫生当局仅依靠非药物控制措施的情况,并通过分岔理论对模型进行定性分析,以分析地方性和共地方性平衡的存在性和稳定性。我们还展示了最相关的信息相关参数对系统动力学的影响。然后,我们通过假设两种病毒都有疫苗来扩展模型。我们展示了关于社区疫苗接种覆盖率的信息和谣言如何影响遵守社交距离。最后,我们通过引入双状态开关函数来研究季节性的影响,以表示夏季疫苗接种率和传播率的减少。我们发现季节性导致流行高峰的增加,这表明由于疫苗接种率降低而产生的有害影响超过了由于传播减少而产生的有益影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modelling behavioural changes and vaccination in the transmission of respiratory viruses with co-infection.

Modelling behavioural changes and vaccination in the transmission of respiratory viruses with co-infection.

Modelling behavioural changes and vaccination in the transmission of respiratory viruses with co-infection.

Modelling behavioural changes and vaccination in the transmission of respiratory viruses with co-infection.

We consider a mathematical model to explore the effects of human behavioural changes on the transmission of two respiratory viruses, where co-infection is possible. The model includes an index to describe the human choices induced by information and rumours regarding the diseases. We first consider the case in which the public health authorities rely only on non-pharmaceutical containment measures and perform a qualitative analysis of the model through bifurcation theory, in order to analyse the existence and stability of both endemic and co-endemic equilibria. We also show the impact of the most relevant information-related parameters on the system dynamics. Then, we extend the model by assuming that a vaccine is available for each of the two viruses. We show how adherence to social distancing may be affected by information and rumours regarding the vaccination coverage in the community. Finally, we investigate the effects of seasonality by introducing a two-state switch function to represent a reduction in both vaccination and transmission rates during the summer season. We found that seasonality causes an increase in the prevalence peaks, suggesting that the detrimental effects due to the reduction of vaccination rates prevail over the beneficial ones due to the reduction of transmission.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信