静态和时间网络上流行病的快速和精确随机模拟。

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
PLoS Computational Biology Pub Date : 2025-09-15 eCollection Date: 2025-09-01 DOI:10.1371/journal.pcbi.1013490
Samuel Cure, Florian G Pflug, Simone Pigolotti
{"title":"静态和时间网络上流行病的快速和精确随机模拟。","authors":"Samuel Cure, Florian G Pflug, Simone Pigolotti","doi":"10.1371/journal.pcbi.1013490","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemic models on complex networks are widely used to assess how the social structure of a population affects epidemic spreading. However, their numerical simulation can be computationally heavy, especially for large networks. In this paper, we introduce NEXT-Net: a flexible implementation of the next reaction method for simulating epidemic spreading on both static and temporal weighted networks. We find that NEXT-Net is substantially faster than alternative algorithms, while being exact. It permits, in particular, to efficiently simulate epidemics on networks with millions of nodes on a standard computer. It also permits simulating a broad range of epidemic models on temporal networks, including scenarios in which the network structure changes in response to the epidemic. NEXT-Net is implemented in C++ and accessible from Python and R, thus combining speed with user friendliness. These features make our algorithm an ideal tool for a broad range of applications.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 9","pages":"e1013490"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448994/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast and exact stochastic simulations of epidemics on static and temporal networks.\",\"authors\":\"Samuel Cure, Florian G Pflug, Simone Pigolotti\",\"doi\":\"10.1371/journal.pcbi.1013490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epidemic models on complex networks are widely used to assess how the social structure of a population affects epidemic spreading. However, their numerical simulation can be computationally heavy, especially for large networks. In this paper, we introduce NEXT-Net: a flexible implementation of the next reaction method for simulating epidemic spreading on both static and temporal weighted networks. We find that NEXT-Net is substantially faster than alternative algorithms, while being exact. It permits, in particular, to efficiently simulate epidemics on networks with millions of nodes on a standard computer. It also permits simulating a broad range of epidemic models on temporal networks, including scenarios in which the network structure changes in response to the epidemic. NEXT-Net is implemented in C++ and accessible from Python and R, thus combining speed with user friendliness. These features make our algorithm an ideal tool for a broad range of applications.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 9\",\"pages\":\"e1013490\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013490\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013490","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

复杂网络上的流行病模型被广泛用于评估人口的社会结构如何影响流行病的传播。然而,它们的数值模拟计算量很大,特别是对于大型网络。本文介绍next - net:一种灵活实现的下一个反应方法,用于在静态和时间加权网络上模拟流行病的传播。我们发现NEXT-Net比其他算法要快得多,同时也很精确。特别是,它允许在一台标准计算机上有效地模拟具有数百万节点的网络上的流行病。它还允许在时间网络上模拟各种流行病模型,包括网络结构因流行病而变化的情景。NEXT-Net是用c++实现的,可以从Python和R中访问,从而结合了速度和用户友好性。这些特征使我们的算法成为广泛应用的理想工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and exact stochastic simulations of epidemics on static and temporal networks.

Epidemic models on complex networks are widely used to assess how the social structure of a population affects epidemic spreading. However, their numerical simulation can be computationally heavy, especially for large networks. In this paper, we introduce NEXT-Net: a flexible implementation of the next reaction method for simulating epidemic spreading on both static and temporal weighted networks. We find that NEXT-Net is substantially faster than alternative algorithms, while being exact. It permits, in particular, to efficiently simulate epidemics on networks with millions of nodes on a standard computer. It also permits simulating a broad range of epidemic models on temporal networks, including scenarios in which the network structure changes in response to the epidemic. NEXT-Net is implemented in C++ and accessible from Python and R, thus combining speed with user friendliness. These features make our algorithm an ideal tool for a broad range of applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信