Matthias Bruhns, Jan T Schleicher, Maximilian Wirth, Marcello Zago, Sepideh Babaei, Manfred Claassen
{"title":"高复用组织成像中分割误差对下游分析的影响。","authors":"Matthias Bruhns, Jan T Schleicher, Maximilian Wirth, Marcello Zago, Sepideh Babaei, Manfred Claassen","doi":"10.1371/journal.pcbi.1013350","DOIUrl":null,"url":null,"abstract":"<p><p>Highly multiplexed single-cell imaging technologies have revolutionized our ability to capture spatial protein expression at the single-cell level, thereby enabling a deeper understanding of tissue organization and function. However, these advancements rely on accurate cell segmentation, which defines cell boundaries to generate expression profiles. Despite its importance, there is a gap in quantifying how segmentation inaccuracies propagate through analytical pipelines, particularly affecting cell clustering and phenotyping. We introduce a framework that uses affine transformations to simulate realistic segmentation errors. Our approach mimics the variations induced by segmentation algorithms, allowing us to evaluate the robustness of downstream analyses under controlled perturbation conditions. We show that even moderate segmentation errors can significantly distort estimated protein profiles and disrupt cellular neighborhood relationships in feature space. Effects are most pronounced in clustering analyses, where both unsupervised k-Means and graph-based Leiden algorithms exhibit reduced consistency with increasing perturbation - especially with smaller neighborhood sizes. Similarly, cell phenotyping via Gaussian Mixture Models is adversely impacted, with higher levels of segmentation error leading to notable misclassifications between closely related cell types. These results highlight the importance of ensuring high-quality segmentation and careful data processing strategies to mitigate spurious results for downstream analysis tasks. Considering segmentation inaccuracies, possibly in a probabilistic modeling framework, will improve the reliability and reproducibility of findings in multiplexed tissue imaging studies.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 9","pages":"e1013350"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456762/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of segmentation errors on downstream-analysis in highly-multiplexed tissue imaging.\",\"authors\":\"Matthias Bruhns, Jan T Schleicher, Maximilian Wirth, Marcello Zago, Sepideh Babaei, Manfred Claassen\",\"doi\":\"10.1371/journal.pcbi.1013350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Highly multiplexed single-cell imaging technologies have revolutionized our ability to capture spatial protein expression at the single-cell level, thereby enabling a deeper understanding of tissue organization and function. However, these advancements rely on accurate cell segmentation, which defines cell boundaries to generate expression profiles. Despite its importance, there is a gap in quantifying how segmentation inaccuracies propagate through analytical pipelines, particularly affecting cell clustering and phenotyping. We introduce a framework that uses affine transformations to simulate realistic segmentation errors. Our approach mimics the variations induced by segmentation algorithms, allowing us to evaluate the robustness of downstream analyses under controlled perturbation conditions. We show that even moderate segmentation errors can significantly distort estimated protein profiles and disrupt cellular neighborhood relationships in feature space. Effects are most pronounced in clustering analyses, where both unsupervised k-Means and graph-based Leiden algorithms exhibit reduced consistency with increasing perturbation - especially with smaller neighborhood sizes. Similarly, cell phenotyping via Gaussian Mixture Models is adversely impacted, with higher levels of segmentation error leading to notable misclassifications between closely related cell types. These results highlight the importance of ensuring high-quality segmentation and careful data processing strategies to mitigate spurious results for downstream analysis tasks. Considering segmentation inaccuracies, possibly in a probabilistic modeling framework, will improve the reliability and reproducibility of findings in multiplexed tissue imaging studies.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 9\",\"pages\":\"e1013350\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456762/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013350\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013350","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Effects of segmentation errors on downstream-analysis in highly-multiplexed tissue imaging.
Highly multiplexed single-cell imaging technologies have revolutionized our ability to capture spatial protein expression at the single-cell level, thereby enabling a deeper understanding of tissue organization and function. However, these advancements rely on accurate cell segmentation, which defines cell boundaries to generate expression profiles. Despite its importance, there is a gap in quantifying how segmentation inaccuracies propagate through analytical pipelines, particularly affecting cell clustering and phenotyping. We introduce a framework that uses affine transformations to simulate realistic segmentation errors. Our approach mimics the variations induced by segmentation algorithms, allowing us to evaluate the robustness of downstream analyses under controlled perturbation conditions. We show that even moderate segmentation errors can significantly distort estimated protein profiles and disrupt cellular neighborhood relationships in feature space. Effects are most pronounced in clustering analyses, where both unsupervised k-Means and graph-based Leiden algorithms exhibit reduced consistency with increasing perturbation - especially with smaller neighborhood sizes. Similarly, cell phenotyping via Gaussian Mixture Models is adversely impacted, with higher levels of segmentation error leading to notable misclassifications between closely related cell types. These results highlight the importance of ensuring high-quality segmentation and careful data processing strategies to mitigate spurious results for downstream analysis tasks. Considering segmentation inaccuracies, possibly in a probabilistic modeling framework, will improve the reliability and reproducibility of findings in multiplexed tissue imaging studies.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.