Marco Garcia Noceda, Gargi Kher, Shikhar Uttam, John P Barton
{"title":"克隆异质性和抗原刺激形成HIV潜伏库的持久性。","authors":"Marco Garcia Noceda, Gargi Kher, Shikhar Uttam, John P Barton","doi":"10.1371/journal.pcbi.1013433","DOIUrl":null,"url":null,"abstract":"<p><p>Drug treatment can control HIV-1 replication, but it cannot cure infection. This is because of a long-lived population of quiescent infected cells, known as the latent reservoir (LR), that can restart active replication even after decades of successful drug treatment. Many cells in the LR belong to highly expanded clones, but the processes underlying the clonal structure of the LR are unclear. Understanding the dynamics of the LR and the keys to its persistence is critical for developing an HIV-1 cure. Here we develop a quantitative model of LR dynamics that fits available patient data over time scales spanning from days to decades. We show that the interplay between antigenic stimulation and clonal heterogeneity shapes the dynamics of the LR. In particular, we find that large clones play a central role in long-term persistence, even though they rarely reactivate. Our results could inform the development of HIV-1 cure strategies.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 9","pages":"e1013433"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445745/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clonal heterogeneity and antigenic stimulation shape persistence of the latent reservoir of HIV.\",\"authors\":\"Marco Garcia Noceda, Gargi Kher, Shikhar Uttam, John P Barton\",\"doi\":\"10.1371/journal.pcbi.1013433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug treatment can control HIV-1 replication, but it cannot cure infection. This is because of a long-lived population of quiescent infected cells, known as the latent reservoir (LR), that can restart active replication even after decades of successful drug treatment. Many cells in the LR belong to highly expanded clones, but the processes underlying the clonal structure of the LR are unclear. Understanding the dynamics of the LR and the keys to its persistence is critical for developing an HIV-1 cure. Here we develop a quantitative model of LR dynamics that fits available patient data over time scales spanning from days to decades. We show that the interplay between antigenic stimulation and clonal heterogeneity shapes the dynamics of the LR. In particular, we find that large clones play a central role in long-term persistence, even though they rarely reactivate. Our results could inform the development of HIV-1 cure strategies.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 9\",\"pages\":\"e1013433\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013433\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013433","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Clonal heterogeneity and antigenic stimulation shape persistence of the latent reservoir of HIV.
Drug treatment can control HIV-1 replication, but it cannot cure infection. This is because of a long-lived population of quiescent infected cells, known as the latent reservoir (LR), that can restart active replication even after decades of successful drug treatment. Many cells in the LR belong to highly expanded clones, but the processes underlying the clonal structure of the LR are unclear. Understanding the dynamics of the LR and the keys to its persistence is critical for developing an HIV-1 cure. Here we develop a quantitative model of LR dynamics that fits available patient data over time scales spanning from days to decades. We show that the interplay between antigenic stimulation and clonal heterogeneity shapes the dynamics of the LR. In particular, we find that large clones play a central role in long-term persistence, even though they rarely reactivate. Our results could inform the development of HIV-1 cure strategies.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.