廖光学。

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-09-15 DOI:10.1364/OL.565477
Hongming Shen, Wen Xiao, Fei Fang Chung, Huanyang Chen
{"title":"廖光学。","authors":"Hongming Shen, Wen Xiao, Fei Fang Chung, Huanyang Chen","doi":"10.1364/OL.565477","DOIUrl":null,"url":null,"abstract":"<p><p>Transformation optics establishes an equivalence relationship between gradient media and curved space, unveiling intrinsic geometric properties of gradient media. However, this approach based on curved spaces is concentrated on two-dimensional manifolds, namely, curved surfaces. In this Letter, we establish an intrinsic connection between three-dimensional manifolds and three-dimensional gradient media in transformation optics by leveraging the Yamabe problem and Ricci scalar curvature-a measure of spatial curvature in manifolds. The invariance of the Ricci scalar under conformal mappings is proven. Our framework is validated through the analysis of representative conformal optical lenses.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 18","pages":"5702-5705"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold optics.\",\"authors\":\"Hongming Shen, Wen Xiao, Fei Fang Chung, Huanyang Chen\",\"doi\":\"10.1364/OL.565477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transformation optics establishes an equivalence relationship between gradient media and curved space, unveiling intrinsic geometric properties of gradient media. However, this approach based on curved spaces is concentrated on two-dimensional manifolds, namely, curved surfaces. In this Letter, we establish an intrinsic connection between three-dimensional manifolds and three-dimensional gradient media in transformation optics by leveraging the Yamabe problem and Ricci scalar curvature-a measure of spatial curvature in manifolds. The invariance of the Ricci scalar under conformal mappings is proven. Our framework is validated through the analysis of representative conformal optical lenses.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 18\",\"pages\":\"5702-5705\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.565477\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.565477","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

变换光学建立了梯度介质与弯曲空间的等价关系,揭示了梯度介质固有的几何性质。然而,这种基于弯曲空间的方法主要集中在二维流形上,即曲面上。在本文中,我们利用Yamabe问题和Ricci标量曲率(流形中空间曲率的度量)建立了变换光学中三维流形和三维梯度介质之间的内在联系。证明了Ricci标量在保角映射下的不变性。通过对具有代表性的共形光学透镜的分析,验证了我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manifold optics.

Transformation optics establishes an equivalence relationship between gradient media and curved space, unveiling intrinsic geometric properties of gradient media. However, this approach based on curved spaces is concentrated on two-dimensional manifolds, namely, curved surfaces. In this Letter, we establish an intrinsic connection between three-dimensional manifolds and three-dimensional gradient media in transformation optics by leveraging the Yamabe problem and Ricci scalar curvature-a measure of spatial curvature in manifolds. The invariance of the Ricci scalar under conformal mappings is proven. Our framework is validated through the analysis of representative conformal optical lenses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信