Xiaohang Fu, Yue Cao, Beilei Bian, Chuhan Wang, Dinny Graham, Nirmala Pathmanathan, Ellis Patrick, Jinman Kim, Jean Yee Hwa Yang
{"title":"利用深度学习和GHIST在组织学上的单细胞分辨率的空间基因表达。","authors":"Xiaohang Fu, Yue Cao, Beilei Bian, Chuhan Wang, Dinny Graham, Nirmala Pathmanathan, Ellis Patrick, Jinman Kim, Jean Yee Hwa Yang","doi":"10.1038/s41592-025-02795-z","DOIUrl":null,"url":null,"abstract":"The increased use of spatially resolved transcriptomics provides new biological insights into disease mechanisms. However, the high cost and complexity of these methods are barriers to broader application. Consequently, methods have been created to predict spot-based gene expression from routinely collected histology images. Recent benchmarking showed that current methodologies have limited accuracy and spatial resolution, constraining translational capacity. Here, we introduce GHIST, a deep learning-based framework that predicts spatial gene expression at single-cell resolution by leveraging subcellular spatial transcriptomics and synergistic relationships between multiple layers of biological information. We validated GHIST using public datasets and The Cancer Genome Atlas data, demonstrating its flexibility across different spatial resolutions and superior performance. Our results underscore the utility of in silico generation of single-cell spatial gene expression measurements and the capacity to enrich existing datasets with a spatially resolved omics modality, paving the way for scalable multi-omics analysis and biomarker identification. GHIST is a deep learning-based method that can predict spatial gene expression at high resolution using histology data.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 9","pages":"1900-1910"},"PeriodicalIF":32.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446070/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatial gene expression at single-cell resolution from histology using deep learning with GHIST\",\"authors\":\"Xiaohang Fu, Yue Cao, Beilei Bian, Chuhan Wang, Dinny Graham, Nirmala Pathmanathan, Ellis Patrick, Jinman Kim, Jean Yee Hwa Yang\",\"doi\":\"10.1038/s41592-025-02795-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increased use of spatially resolved transcriptomics provides new biological insights into disease mechanisms. However, the high cost and complexity of these methods are barriers to broader application. Consequently, methods have been created to predict spot-based gene expression from routinely collected histology images. Recent benchmarking showed that current methodologies have limited accuracy and spatial resolution, constraining translational capacity. Here, we introduce GHIST, a deep learning-based framework that predicts spatial gene expression at single-cell resolution by leveraging subcellular spatial transcriptomics and synergistic relationships between multiple layers of biological information. We validated GHIST using public datasets and The Cancer Genome Atlas data, demonstrating its flexibility across different spatial resolutions and superior performance. Our results underscore the utility of in silico generation of single-cell spatial gene expression measurements and the capacity to enrich existing datasets with a spatially resolved omics modality, paving the way for scalable multi-omics analysis and biomarker identification. GHIST is a deep learning-based method that can predict spatial gene expression at high resolution using histology data.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"22 9\",\"pages\":\"1900-1910\"},\"PeriodicalIF\":32.1000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446070/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-025-02795-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-025-02795-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Spatial gene expression at single-cell resolution from histology using deep learning with GHIST
The increased use of spatially resolved transcriptomics provides new biological insights into disease mechanisms. However, the high cost and complexity of these methods are barriers to broader application. Consequently, methods have been created to predict spot-based gene expression from routinely collected histology images. Recent benchmarking showed that current methodologies have limited accuracy and spatial resolution, constraining translational capacity. Here, we introduce GHIST, a deep learning-based framework that predicts spatial gene expression at single-cell resolution by leveraging subcellular spatial transcriptomics and synergistic relationships between multiple layers of biological information. We validated GHIST using public datasets and The Cancer Genome Atlas data, demonstrating its flexibility across different spatial resolutions and superior performance. Our results underscore the utility of in silico generation of single-cell spatial gene expression measurements and the capacity to enrich existing datasets with a spatially resolved omics modality, paving the way for scalable multi-omics analysis and biomarker identification. GHIST is a deep learning-based method that can predict spatial gene expression at high resolution using histology data.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.