Senanur Taş, H Ali Döndaş, Naciye Yaktubay Döndaş, Samet Poyraz, Tuğba Taşkın Tok, Gülüzar Atlı Demiray, Samet Belveren, Tuncay İnce, Yeliz Demir, Mehmet Bertan Yılmaz, Mahmut Ülger, Mehmet Ali Tamer, José M Sansano, Christopher M Pask
{"title":"吡咯烷基杂化化合物:设计、合成、体外和体内药理学性质及分子对接研究。","authors":"Senanur Taş, H Ali Döndaş, Naciye Yaktubay Döndaş, Samet Poyraz, Tuğba Taşkın Tok, Gülüzar Atlı Demiray, Samet Belveren, Tuncay İnce, Yeliz Demir, Mehmet Bertan Yılmaz, Mahmut Ülger, Mehmet Ali Tamer, José M Sansano, Christopher M Pask","doi":"10.1080/17568919.2025.2559573","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To design, synthesize, and evaluate pyrrolidine-based hybrids bearing indole, thiourea, and vinyl sulfone pharmacophores as dual inhibitors of human carbonic anhydrase I/II (hCAI/II) and acetylcholinesterase (AChE), with secondary profiling of complementary bioactivities.</p><p><strong>Materials & methods: </strong>Three hybrids (6a, 6b, 8) were obtained <i>via</i> imine azomethine ylide 1,3-dipolar cycloaddition and derivatization. Structures were confirmed spectroscopically and assayed <i>in vitro</i> for hCAI/II and AChE inhibition. Additional evaluations included antioxidant (DPPH), antibacterial, antifungal, antituberculosis (<i>M. tuberculosis</i> H37Rv), cytotoxicity (HCT116, DPSCs), anti-inflammatory (COX-2, SOD1 ELISA, mouse xylene-induced), antidepressant (forced swim test), molecular docking, and <i>in silico</i> ADMET.</p><p><strong>Results: </strong>Compound 6b was the most potent inhibitor (hCAII <i>K</i>i 75.79 ± 2.83 nM, AChE <i>K</i>i 43.17 ± 10.44 nM), outperforming acetazolamide (<i>K</i>i 299.33 ± 45.44 nM) and tacrine (<i>K</i>i 103.47 ± 11.54 nM). Compound 6a showed the strongest antioxidant effect (72.30% DPPH), antibacterial activity against <i>A. baumannii</i> (MIC 125 µg/ml, comparable to ampicillin), and superior anti-TB potency (MIC 31.25 µg/ml). Compound 6b exhibited stronger antibacterial activity (MIC 62.5 µg/ml). Both reduced COX-2 levels, and 6a increased SOD1. The hybrids were selectively cytotoxic to HCT116, sparing DPSCs. Docking studies confirmed key binding interactions, while ADMET predicted favorable profiles. .</p><p><strong>Conclusions: </strong>The hybrids validate a focused dual-target strategy. Compound 6b is the most potent hCAII and AChE inhibitor, while 6a emerges as a broader multi-target lead with antioxidant, antimicrobial, anti-inflammatory, and antidepressant potential.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2361-2377"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490407/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pyrrolidine-based hybrid compounds: design, synthesis, in vitro and in vivo pharmacological properties and molecular docking studies.\",\"authors\":\"Senanur Taş, H Ali Döndaş, Naciye Yaktubay Döndaş, Samet Poyraz, Tuğba Taşkın Tok, Gülüzar Atlı Demiray, Samet Belveren, Tuncay İnce, Yeliz Demir, Mehmet Bertan Yılmaz, Mahmut Ülger, Mehmet Ali Tamer, José M Sansano, Christopher M Pask\",\"doi\":\"10.1080/17568919.2025.2559573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>To design, synthesize, and evaluate pyrrolidine-based hybrids bearing indole, thiourea, and vinyl sulfone pharmacophores as dual inhibitors of human carbonic anhydrase I/II (hCAI/II) and acetylcholinesterase (AChE), with secondary profiling of complementary bioactivities.</p><p><strong>Materials & methods: </strong>Three hybrids (6a, 6b, 8) were obtained <i>via</i> imine azomethine ylide 1,3-dipolar cycloaddition and derivatization. Structures were confirmed spectroscopically and assayed <i>in vitro</i> for hCAI/II and AChE inhibition. Additional evaluations included antioxidant (DPPH), antibacterial, antifungal, antituberculosis (<i>M. tuberculosis</i> H37Rv), cytotoxicity (HCT116, DPSCs), anti-inflammatory (COX-2, SOD1 ELISA, mouse xylene-induced), antidepressant (forced swim test), molecular docking, and <i>in silico</i> ADMET.</p><p><strong>Results: </strong>Compound 6b was the most potent inhibitor (hCAII <i>K</i>i 75.79 ± 2.83 nM, AChE <i>K</i>i 43.17 ± 10.44 nM), outperforming acetazolamide (<i>K</i>i 299.33 ± 45.44 nM) and tacrine (<i>K</i>i 103.47 ± 11.54 nM). Compound 6a showed the strongest antioxidant effect (72.30% DPPH), antibacterial activity against <i>A. baumannii</i> (MIC 125 µg/ml, comparable to ampicillin), and superior anti-TB potency (MIC 31.25 µg/ml). Compound 6b exhibited stronger antibacterial activity (MIC 62.5 µg/ml). Both reduced COX-2 levels, and 6a increased SOD1. The hybrids were selectively cytotoxic to HCT116, sparing DPSCs. Docking studies confirmed key binding interactions, while ADMET predicted favorable profiles. .</p><p><strong>Conclusions: </strong>The hybrids validate a focused dual-target strategy. Compound 6b is the most potent hCAII and AChE inhibitor, while 6a emerges as a broader multi-target lead with antioxidant, antimicrobial, anti-inflammatory, and antidepressant potential.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"2361-2377\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2025.2559573\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2559573","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
目的:设计、合成并评价含有吲哚、硫脲和乙烯基砜的吡咯烷类化合物作为人碳酸酐酶I/II (hCAI/II)和乙酰胆碱酯酶(AChE)的双重抑制剂,并对其互补生物活性进行二次分析。材料与方法:通过亚胺亚甲酰基1,3偶极环加成和衍生化得到3个杂化物(6a, 6b, 8)。对其结构进行了光谱鉴定,并测定了其体外对hCAI/II和AChE的抑制作用。其他评估包括抗氧化(DPPH)、抗菌、抗真菌、抗结核(结核分枝杆菌H37Rv)、细胞毒性(HCT116、DPSCs)、抗炎(COX-2、SOD1 ELISA、小鼠二甲苯诱导)、抗抑郁(强迫游泳试验)、分子对接和硅ADMET。结果:化合物6b是最有效的抑制剂(hCAII Ki 75.79±2.83 nM, AChE Ki 43.17±10.44 nM),优于乙酰唑胺(Ki 299.33±45.44 nM)和他克林(Ki 103.47±11.54 nM)。化合物6a的抗氧化作用最强(DPPH为72.30%),对鲍曼不动杆菌的抑菌活性最高(MIC为125µg/ml,与氨苄西林相当),抗结核活性最高(MIC为31.25µg/ml)。化合物6b具有较强的抑菌活性(MIC为62.5µg/ml)。两者都降低了COX-2水平,6a增加了SOD1。杂交种对HCT116具有选择性细胞毒性,保护DPSCs。对接研究证实了关键的结合相互作用,而ADMET预测了有利的前景。结论:杂交体验证了聚焦双靶标策略。化合物6b是最有效的hCAII和AChE抑制剂,而6a则是更广泛的多靶点先导物,具有抗氧化、抗菌、抗炎和抗抑郁的潜力。
Pyrrolidine-based hybrid compounds: design, synthesis, in vitro and in vivo pharmacological properties and molecular docking studies.
Aims: To design, synthesize, and evaluate pyrrolidine-based hybrids bearing indole, thiourea, and vinyl sulfone pharmacophores as dual inhibitors of human carbonic anhydrase I/II (hCAI/II) and acetylcholinesterase (AChE), with secondary profiling of complementary bioactivities.
Materials & methods: Three hybrids (6a, 6b, 8) were obtained via imine azomethine ylide 1,3-dipolar cycloaddition and derivatization. Structures were confirmed spectroscopically and assayed in vitro for hCAI/II and AChE inhibition. Additional evaluations included antioxidant (DPPH), antibacterial, antifungal, antituberculosis (M. tuberculosis H37Rv), cytotoxicity (HCT116, DPSCs), anti-inflammatory (COX-2, SOD1 ELISA, mouse xylene-induced), antidepressant (forced swim test), molecular docking, and in silico ADMET.
Results: Compound 6b was the most potent inhibitor (hCAII Ki 75.79 ± 2.83 nM, AChE Ki 43.17 ± 10.44 nM), outperforming acetazolamide (Ki 299.33 ± 45.44 nM) and tacrine (Ki 103.47 ± 11.54 nM). Compound 6a showed the strongest antioxidant effect (72.30% DPPH), antibacterial activity against A. baumannii (MIC 125 µg/ml, comparable to ampicillin), and superior anti-TB potency (MIC 31.25 µg/ml). Compound 6b exhibited stronger antibacterial activity (MIC 62.5 µg/ml). Both reduced COX-2 levels, and 6a increased SOD1. The hybrids were selectively cytotoxic to HCT116, sparing DPSCs. Docking studies confirmed key binding interactions, while ADMET predicted favorable profiles. .
Conclusions: The hybrids validate a focused dual-target strategy. Compound 6b is the most potent hCAII and AChE inhibitor, while 6a emerges as a broader multi-target lead with antioxidant, antimicrobial, anti-inflammatory, and antidepressant potential.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.