Ymke A de Jong, Rana M Seren, Vida Ramšak Marčeta, Antonio Checa, Dagbjort H Petursdottír, Isabella Badolati, Claudia Moeckel, Omneya Ahmed Osman, Eva Hell, Douglas L Huseby, Diarmaid Hughes, Craig E Wheelock, Sarahi L Garcia, Klas I Udekwu, Khaleda R Qazi, Eva Sverremark-Ekström
{"title":"早期人类微生物群对小鼠宿主代谢组的影响:来自两代HMA小鼠模型的见解及其对过敏性疾病的影响","authors":"Ymke A de Jong, Rana M Seren, Vida Ramšak Marčeta, Antonio Checa, Dagbjort H Petursdottír, Isabella Badolati, Claudia Moeckel, Omneya Ahmed Osman, Eva Hell, Douglas L Huseby, Diarmaid Hughes, Craig E Wheelock, Sarahi L Garcia, Klas I Udekwu, Khaleda R Qazi, Eva Sverremark-Ekström","doi":"10.1186/s12866-025-04321-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Human microbiota-associated (HMA) models are used to allow in vivo studies of the human gut microbiome and its effects on host physiology. In particular, alterations in early life microbiota have been linked to allergy development during childhood. In this study, we investigated how pools of human microbiota collected from infants with different allergy risk, thrive in mice and their offspring, as well as how they influence the host metabolome.</p><p><strong>Method: </strong>We used a two-generation HMA mouse model in which dams were colonized with human feces from three groups of infants (n = 19, samples collected during the first 8 weeks of life). In two of the groups, all infants had a strong hereditary risk for allergic disease (n = 12), but only 6 of them developed allergy before 2 years of age. In the third group, which was used as a control, none of the infants had allergic heredity or developed allergy (n = 7). Microbiota trajectories were followed from inoculation to mouse offspring, and metabolic profiles were monitored in several intestinal organs as well as in the serum of the murine offspring.</p><p><strong>Results: </strong>The human microbiota adapted to the murine host but still presented distinct compositional features, reflecting the original inoculated samples. These microbial differences were mirrored in the mouse offspring metabolome, with group-associated patterns in sphingolipids, acylcarnitines and tryptophan metabolites. Furthermore, the metabolic profiles of the mouse offspring aligned with those observed in fecal water preparations from the corresponding human infant fecal samples.</p><p><strong>Conclusion: </strong>Our findings highlight the significant impact of early-life microbiota on the host metabolome and show that our two-generation HMA model is suitable for studying microbiota‒metabolome relationships relevant to humans. The differences in microbiota‒metabolome correlations between individuals who develop or do not develop allergic disease suggest that an allergic predisposition might be more multifaceted than previously believed.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"575"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439373/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of early-life human microbiota on the murine host metabolome: insights from a two-generation HMA mouse model and implications for allergic disease.\",\"authors\":\"Ymke A de Jong, Rana M Seren, Vida Ramšak Marčeta, Antonio Checa, Dagbjort H Petursdottír, Isabella Badolati, Claudia Moeckel, Omneya Ahmed Osman, Eva Hell, Douglas L Huseby, Diarmaid Hughes, Craig E Wheelock, Sarahi L Garcia, Klas I Udekwu, Khaleda R Qazi, Eva Sverremark-Ekström\",\"doi\":\"10.1186/s12866-025-04321-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Human microbiota-associated (HMA) models are used to allow in vivo studies of the human gut microbiome and its effects on host physiology. In particular, alterations in early life microbiota have been linked to allergy development during childhood. In this study, we investigated how pools of human microbiota collected from infants with different allergy risk, thrive in mice and their offspring, as well as how they influence the host metabolome.</p><p><strong>Method: </strong>We used a two-generation HMA mouse model in which dams were colonized with human feces from three groups of infants (n = 19, samples collected during the first 8 weeks of life). In two of the groups, all infants had a strong hereditary risk for allergic disease (n = 12), but only 6 of them developed allergy before 2 years of age. In the third group, which was used as a control, none of the infants had allergic heredity or developed allergy (n = 7). Microbiota trajectories were followed from inoculation to mouse offspring, and metabolic profiles were monitored in several intestinal organs as well as in the serum of the murine offspring.</p><p><strong>Results: </strong>The human microbiota adapted to the murine host but still presented distinct compositional features, reflecting the original inoculated samples. These microbial differences were mirrored in the mouse offspring metabolome, with group-associated patterns in sphingolipids, acylcarnitines and tryptophan metabolites. Furthermore, the metabolic profiles of the mouse offspring aligned with those observed in fecal water preparations from the corresponding human infant fecal samples.</p><p><strong>Conclusion: </strong>Our findings highlight the significant impact of early-life microbiota on the host metabolome and show that our two-generation HMA model is suitable for studying microbiota‒metabolome relationships relevant to humans. The differences in microbiota‒metabolome correlations between individuals who develop or do not develop allergic disease suggest that an allergic predisposition might be more multifaceted than previously believed.</p>\",\"PeriodicalId\":9233,\"journal\":{\"name\":\"BMC Microbiology\",\"volume\":\"25 1\",\"pages\":\"575\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12866-025-04321-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-04321-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Impact of early-life human microbiota on the murine host metabolome: insights from a two-generation HMA mouse model and implications for allergic disease.
Introduction: Human microbiota-associated (HMA) models are used to allow in vivo studies of the human gut microbiome and its effects on host physiology. In particular, alterations in early life microbiota have been linked to allergy development during childhood. In this study, we investigated how pools of human microbiota collected from infants with different allergy risk, thrive in mice and their offspring, as well as how they influence the host metabolome.
Method: We used a two-generation HMA mouse model in which dams were colonized with human feces from three groups of infants (n = 19, samples collected during the first 8 weeks of life). In two of the groups, all infants had a strong hereditary risk for allergic disease (n = 12), but only 6 of them developed allergy before 2 years of age. In the third group, which was used as a control, none of the infants had allergic heredity or developed allergy (n = 7). Microbiota trajectories were followed from inoculation to mouse offspring, and metabolic profiles were monitored in several intestinal organs as well as in the serum of the murine offspring.
Results: The human microbiota adapted to the murine host but still presented distinct compositional features, reflecting the original inoculated samples. These microbial differences were mirrored in the mouse offspring metabolome, with group-associated patterns in sphingolipids, acylcarnitines and tryptophan metabolites. Furthermore, the metabolic profiles of the mouse offspring aligned with those observed in fecal water preparations from the corresponding human infant fecal samples.
Conclusion: Our findings highlight the significant impact of early-life microbiota on the host metabolome and show that our two-generation HMA model is suitable for studying microbiota‒metabolome relationships relevant to humans. The differences in microbiota‒metabolome correlations between individuals who develop or do not develop allergic disease suggest that an allergic predisposition might be more multifaceted than previously believed.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.