Xinyu Zhu, Huihui Li, Tingting Xue, Shu Wang, Ruixiang Zhu, Jiali Luo, Ruotong Ju, Puhua Zhang, Xiangrong Cui, Xuan Jing
{"title":"多途径自噬在卵巢衰老中的作用机制研究:文献综述。","authors":"Xinyu Zhu, Huihui Li, Tingting Xue, Shu Wang, Ruixiang Zhu, Jiali Luo, Ruotong Ju, Puhua Zhang, Xiangrong Cui, Xuan Jing","doi":"10.1007/s10495-025-02181-2","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian aging is one of the common diseases in the female reproductive system. It is characterized by complex etiologies, involving multiple factors such as genetics, environment, metabolism, and cellular stress. In recent years, autophagy, a crucial cellular self-degradation and repair mechanism, has received substantial attention for its role in maintaining and deteriorating ovarian function. This review systematically summarizes the molecular mechanisms of autophagy and its regulation, as well as the latest research progress of macroautophagy, chaperone-mediated autophagy (CMA) and mitophagy in ovarian aging. Studies have shown that dysregulation of autophagic pathways is closely associated with decreased oocyte quality and reduced ovarian reserve function. Additionally, signaling pathways such as PI3K, AMPK, and mTOR participate in the process of ovarian aging by regulating autophagic activity. Although numerous studies have revealed the critical role of autophagy in ovarian aging, many issues remain to be resolved, such as the crosstalk mechanisms between different autophagic pathways and the precise spatiotemporal dynamics of the autophagic regulatory network. A deep understanding of the regulatory network of multi-pathway autophagy will provide new insights for developing intervention strategies to delay ovarian aging, holding significant scientific and clinical application value.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic study on the role of multi-pathway autophagy in ovarian aging: literature review.\",\"authors\":\"Xinyu Zhu, Huihui Li, Tingting Xue, Shu Wang, Ruixiang Zhu, Jiali Luo, Ruotong Ju, Puhua Zhang, Xiangrong Cui, Xuan Jing\",\"doi\":\"10.1007/s10495-025-02181-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ovarian aging is one of the common diseases in the female reproductive system. It is characterized by complex etiologies, involving multiple factors such as genetics, environment, metabolism, and cellular stress. In recent years, autophagy, a crucial cellular self-degradation and repair mechanism, has received substantial attention for its role in maintaining and deteriorating ovarian function. This review systematically summarizes the molecular mechanisms of autophagy and its regulation, as well as the latest research progress of macroautophagy, chaperone-mediated autophagy (CMA) and mitophagy in ovarian aging. Studies have shown that dysregulation of autophagic pathways is closely associated with decreased oocyte quality and reduced ovarian reserve function. Additionally, signaling pathways such as PI3K, AMPK, and mTOR participate in the process of ovarian aging by regulating autophagic activity. Although numerous studies have revealed the critical role of autophagy in ovarian aging, many issues remain to be resolved, such as the crosstalk mechanisms between different autophagic pathways and the precise spatiotemporal dynamics of the autophagic regulatory network. A deep understanding of the regulatory network of multi-pathway autophagy will provide new insights for developing intervention strategies to delay ovarian aging, holding significant scientific and clinical application value.</p>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10495-025-02181-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-025-02181-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mechanistic study on the role of multi-pathway autophagy in ovarian aging: literature review.
Ovarian aging is one of the common diseases in the female reproductive system. It is characterized by complex etiologies, involving multiple factors such as genetics, environment, metabolism, and cellular stress. In recent years, autophagy, a crucial cellular self-degradation and repair mechanism, has received substantial attention for its role in maintaining and deteriorating ovarian function. This review systematically summarizes the molecular mechanisms of autophagy and its regulation, as well as the latest research progress of macroautophagy, chaperone-mediated autophagy (CMA) and mitophagy in ovarian aging. Studies have shown that dysregulation of autophagic pathways is closely associated with decreased oocyte quality and reduced ovarian reserve function. Additionally, signaling pathways such as PI3K, AMPK, and mTOR participate in the process of ovarian aging by regulating autophagic activity. Although numerous studies have revealed the critical role of autophagy in ovarian aging, many issues remain to be resolved, such as the crosstalk mechanisms between different autophagic pathways and the precise spatiotemporal dynamics of the autophagic regulatory network. A deep understanding of the regulatory network of multi-pathway autophagy will provide new insights for developing intervention strategies to delay ovarian aging, holding significant scientific and clinical application value.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.