子宫内膜ECM修饰的半球形水凝胶递送半月板细胞促进薄子宫内膜再生。

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Ming Chen, Xuemin Liu, Xiaoxia Song, Xiaofeng Ye, Zeshen Liang, Guoqing Chen, Peixian Cheng, Huihua Yang, Ling Shuai, Dongdong Li, Liping Wang
{"title":"子宫内膜ECM修饰的半球形水凝胶递送半月板细胞促进薄子宫内膜再生。","authors":"Ming Chen, Xuemin Liu, Xiaoxia Song, Xiaofeng Ye, Zeshen Liang, Guoqing Chen, Peixian Cheng, Huihua Yang, Ling Shuai, Dongdong Li, Liping Wang","doi":"10.1002/adhm.202501321","DOIUrl":null,"url":null,"abstract":"<p><p>Thin endometrium (TE), a major cause of embryo implantation failure, increases the risk of early miscarriage, ectopic pregnancy, and perinatal complications. Owing to the poor utilization and short-term effectiveness of current stem cell therapies, their efficacy in improving reproductive outcomes in patients with TE is limited. Endometrial extracellular matrix (EMECM) modified hemispherical hydrogels (ECMHPs) are developed to deliver menstrual blood-derived stem cells (MenSCs) to promote TE repair. The irregular porous structure on one side of the hemispherical hydrogel microspheres significantly enhances their retention capability on the uterine wall, whereas the bioactive decellularized EMECM promotes MenSCs proliferation and paracrine function. In vitro experiments demonstrate that ECMHPs@MenSCs promote the proliferation of damaged human endometrial stromal cells (HESCs) while inhibiting their fibrosis and apoptosis. In TE rat models, intrauterine transplantation of the ECMHPs delivering MenSCs system (ECMHPs@MenSCs) extends retention time, promotes endometrial thickness by 2.3-fold, increases glandular number by 3.7-fold, inhibits endometrial fibrosis. Additionally, this system improves endometrial regeneration markers and uterine receptivity, and restores fertility, with a mean gestational sac number of 11.0 ± 2.8 compared with only 2.3 ± 2.1 in the untreated group. This study provides an efficient and convenient therapeutic strategy for TE repair and fertility restoration.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e01321"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endometrial ECM Modified Hemispherical Hydrogels Delivering MenSCs Promote the Regeneration of Thin Endometrium.\",\"authors\":\"Ming Chen, Xuemin Liu, Xiaoxia Song, Xiaofeng Ye, Zeshen Liang, Guoqing Chen, Peixian Cheng, Huihua Yang, Ling Shuai, Dongdong Li, Liping Wang\",\"doi\":\"10.1002/adhm.202501321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thin endometrium (TE), a major cause of embryo implantation failure, increases the risk of early miscarriage, ectopic pregnancy, and perinatal complications. Owing to the poor utilization and short-term effectiveness of current stem cell therapies, their efficacy in improving reproductive outcomes in patients with TE is limited. Endometrial extracellular matrix (EMECM) modified hemispherical hydrogels (ECMHPs) are developed to deliver menstrual blood-derived stem cells (MenSCs) to promote TE repair. The irregular porous structure on one side of the hemispherical hydrogel microspheres significantly enhances their retention capability on the uterine wall, whereas the bioactive decellularized EMECM promotes MenSCs proliferation and paracrine function. In vitro experiments demonstrate that ECMHPs@MenSCs promote the proliferation of damaged human endometrial stromal cells (HESCs) while inhibiting their fibrosis and apoptosis. In TE rat models, intrauterine transplantation of the ECMHPs delivering MenSCs system (ECMHPs@MenSCs) extends retention time, promotes endometrial thickness by 2.3-fold, increases glandular number by 3.7-fold, inhibits endometrial fibrosis. Additionally, this system improves endometrial regeneration markers and uterine receptivity, and restores fertility, with a mean gestational sac number of 11.0 ± 2.8 compared with only 2.3 ± 2.1 in the untreated group. This study provides an efficient and convenient therapeutic strategy for TE repair and fertility restoration.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e01321\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202501321\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202501321","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜薄(TE)是胚胎植入失败的主要原因,它增加了早期流产、异位妊娠和围产期并发症的风险。由于目前干细胞疗法的利用率低且短期有效,它们在改善TE患者生殖结局方面的功效有限。子宫内膜细胞外基质(EMECM)修饰的半球形水凝胶(ECMHPs)用于输送经血源性干细胞(MenSCs)以促进TE修复。半球形水凝胶微球一侧不规则的多孔结构显著增强了其在子宫壁上的保留能力,而具有生物活性的脱细胞EMECM则促进了MenSCs的增殖和旁分泌功能。体外实验表明,ECMHPs@MenSCs可促进受损人子宫内膜基质细胞(HESCs)的增殖,同时抑制其纤维化和凋亡。在TE大鼠模型中,子宫内移植传递MenSCs系统的ECMHPs (ECMHPs@MenSCs)可延长保留时间,使子宫内膜厚度增加2.3倍,腺体数量增加3.7倍,抑制子宫内膜纤维化。此外,该系统改善了子宫内膜再生标志物和子宫容受性,恢复了生育能力,平均妊娠囊数为11.0±2.8,而未治疗组仅为2.3±2.1。本研究为TE的修复和生育功能的恢复提供了有效、便捷的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endometrial ECM Modified Hemispherical Hydrogels Delivering MenSCs Promote the Regeneration of Thin Endometrium.

Thin endometrium (TE), a major cause of embryo implantation failure, increases the risk of early miscarriage, ectopic pregnancy, and perinatal complications. Owing to the poor utilization and short-term effectiveness of current stem cell therapies, their efficacy in improving reproductive outcomes in patients with TE is limited. Endometrial extracellular matrix (EMECM) modified hemispherical hydrogels (ECMHPs) are developed to deliver menstrual blood-derived stem cells (MenSCs) to promote TE repair. The irregular porous structure on one side of the hemispherical hydrogel microspheres significantly enhances their retention capability on the uterine wall, whereas the bioactive decellularized EMECM promotes MenSCs proliferation and paracrine function. In vitro experiments demonstrate that ECMHPs@MenSCs promote the proliferation of damaged human endometrial stromal cells (HESCs) while inhibiting their fibrosis and apoptosis. In TE rat models, intrauterine transplantation of the ECMHPs delivering MenSCs system (ECMHPs@MenSCs) extends retention time, promotes endometrial thickness by 2.3-fold, increases glandular number by 3.7-fold, inhibits endometrial fibrosis. Additionally, this system improves endometrial regeneration markers and uterine receptivity, and restores fertility, with a mean gestational sac number of 11.0 ± 2.8 compared with only 2.3 ± 2.1 in the untreated group. This study provides an efficient and convenient therapeutic strategy for TE repair and fertility restoration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信