Weixin Wang, Yu Dong, Lin Zhang, Rui Gao, Mingbin Chen, Bei Zhang, Yongheng Du, Lingyan Qiao, Weiwei Qiao, Wenjun Li, Song Qin, Fei Tong
{"title":"基于纳米机器的柔性气泡缓解长QT综合征。","authors":"Weixin Wang, Yu Dong, Lin Zhang, Rui Gao, Mingbin Chen, Bei Zhang, Yongheng Du, Lingyan Qiao, Weiwei Qiao, Wenjun Li, Song Qin, Fei Tong","doi":"10.1002/adhm.202502975","DOIUrl":null,"url":null,"abstract":"<p><p>Typically occurring in individuals with a genetic predisposition, long QT syndrome (LQTS) is characterized by prolonged ventricular repolarization (QT interval prolongation) and susceptibility to tip torsion, ventricular tachycardia, ventricular fibrillation, and sudden cardiac death. Currently, treatment options for LQTS include medication and surgery, but these may cause patient discomfort and disease recurrence. In this study, using biocompatible carrier-free nanomachine-based flexible bubbles are proposed to deliver phycocyanin (PC) for heart protection associated with electrophysiological stability in LQTS in vivo in mice. To form the structures, l-arginine (L-Arg) is polymerized with PC through electrostatic interactions, and Au is sputtered onto one side of the surface of L-arg/PC, functioning as a trigger for generating nitric oxide (NO) in the in vivo microenvironment. The asymmetrically released NO cargo provided a means of improving heart function and arrhythmia by delivering PC, and acted as a propellant for transporting the nanomachine to the target site. After accumulating at the site of heart damage, the nanomachines are triggered by reactive oxygen species (ROS). The accumulated nanomachines provided considerable diffusion of PC, which attenuated heart damage. The nanomachines, with ROS-induced targeting and delivery of PC, have immense potential for providing heart protection by modulating myocardial gap junction proteins and the hypoxic environment, and by ameliorating electrical remodeling in LQTS, and therefore may support future clinical testing.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e02975"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomachine-Based Flexible Bubbles for Alleviating Long QT Syndrome.\",\"authors\":\"Weixin Wang, Yu Dong, Lin Zhang, Rui Gao, Mingbin Chen, Bei Zhang, Yongheng Du, Lingyan Qiao, Weiwei Qiao, Wenjun Li, Song Qin, Fei Tong\",\"doi\":\"10.1002/adhm.202502975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Typically occurring in individuals with a genetic predisposition, long QT syndrome (LQTS) is characterized by prolonged ventricular repolarization (QT interval prolongation) and susceptibility to tip torsion, ventricular tachycardia, ventricular fibrillation, and sudden cardiac death. Currently, treatment options for LQTS include medication and surgery, but these may cause patient discomfort and disease recurrence. In this study, using biocompatible carrier-free nanomachine-based flexible bubbles are proposed to deliver phycocyanin (PC) for heart protection associated with electrophysiological stability in LQTS in vivo in mice. To form the structures, l-arginine (L-Arg) is polymerized with PC through electrostatic interactions, and Au is sputtered onto one side of the surface of L-arg/PC, functioning as a trigger for generating nitric oxide (NO) in the in vivo microenvironment. The asymmetrically released NO cargo provided a means of improving heart function and arrhythmia by delivering PC, and acted as a propellant for transporting the nanomachine to the target site. After accumulating at the site of heart damage, the nanomachines are triggered by reactive oxygen species (ROS). The accumulated nanomachines provided considerable diffusion of PC, which attenuated heart damage. The nanomachines, with ROS-induced targeting and delivery of PC, have immense potential for providing heart protection by modulating myocardial gap junction proteins and the hypoxic environment, and by ameliorating electrical remodeling in LQTS, and therefore may support future clinical testing.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e02975\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202502975\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502975","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Nanomachine-Based Flexible Bubbles for Alleviating Long QT Syndrome.
Typically occurring in individuals with a genetic predisposition, long QT syndrome (LQTS) is characterized by prolonged ventricular repolarization (QT interval prolongation) and susceptibility to tip torsion, ventricular tachycardia, ventricular fibrillation, and sudden cardiac death. Currently, treatment options for LQTS include medication and surgery, but these may cause patient discomfort and disease recurrence. In this study, using biocompatible carrier-free nanomachine-based flexible bubbles are proposed to deliver phycocyanin (PC) for heart protection associated with electrophysiological stability in LQTS in vivo in mice. To form the structures, l-arginine (L-Arg) is polymerized with PC through electrostatic interactions, and Au is sputtered onto one side of the surface of L-arg/PC, functioning as a trigger for generating nitric oxide (NO) in the in vivo microenvironment. The asymmetrically released NO cargo provided a means of improving heart function and arrhythmia by delivering PC, and acted as a propellant for transporting the nanomachine to the target site. After accumulating at the site of heart damage, the nanomachines are triggered by reactive oxygen species (ROS). The accumulated nanomachines provided considerable diffusion of PC, which attenuated heart damage. The nanomachines, with ROS-induced targeting and delivery of PC, have immense potential for providing heart protection by modulating myocardial gap junction proteins and the hypoxic environment, and by ameliorating electrical remodeling in LQTS, and therefore may support future clinical testing.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.