Daniela Gómez-Soto, Paolo Maria Triozzi, Daniel Conde, Cristina Del Barrio, Isabel Allona, Mariano Perales
{"title":"过表达tempranillo样蛋白促进杨树休眠释放。","authors":"Daniela Gómez-Soto, Paolo Maria Triozzi, Daniel Conde, Cristina Del Barrio, Isabel Allona, Mariano Perales","doi":"10.1111/pce.70182","DOIUrl":null,"url":null,"abstract":"<p><p>Trees in temperate and boreal latitudes synchronize their growth-dormancy cycles with seasonal environmental variations to ensure their survival over the years. Dormancy control is crucial during winter when plants cease growth and establish buds to protect their apical meristems from cold temperatures. To overcome endormancy, initiate bud break, and restore growth, plants must be exposed to a specific duration of chilling, referred to as the chilling requirement, which is species- and ecotype-dependent. In this study, we study the novel roles of two TEMPRANILLO-like genes (TEML1 and TEML2) in the annual cycle of poplar. We demonstrated that Populus TEML genes are regulated by photoperiod, cold temperatures and the circadian clock, and they are induced in buds by short days and chilling treatment. Notably, their function diverges from the role of its Arabidopsis ortholog AtTEM, which regulates FLOWERING LOCUS T (FT) transcription and the photoperiodic flowering transcription. Transcriptomic analysis of apical buds during short days and chilling treatment revealed that the overexpression of TEML1 and TEML2 accelerate dormancy release by modulating the expression of dormancy regulators and growth-promoting genes.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of Tempranillo-Like Proteins Promotes Dormancy Release in Poplar.\",\"authors\":\"Daniela Gómez-Soto, Paolo Maria Triozzi, Daniel Conde, Cristina Del Barrio, Isabel Allona, Mariano Perales\",\"doi\":\"10.1111/pce.70182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trees in temperate and boreal latitudes synchronize their growth-dormancy cycles with seasonal environmental variations to ensure their survival over the years. Dormancy control is crucial during winter when plants cease growth and establish buds to protect their apical meristems from cold temperatures. To overcome endormancy, initiate bud break, and restore growth, plants must be exposed to a specific duration of chilling, referred to as the chilling requirement, which is species- and ecotype-dependent. In this study, we study the novel roles of two TEMPRANILLO-like genes (TEML1 and TEML2) in the annual cycle of poplar. We demonstrated that Populus TEML genes are regulated by photoperiod, cold temperatures and the circadian clock, and they are induced in buds by short days and chilling treatment. Notably, their function diverges from the role of its Arabidopsis ortholog AtTEM, which regulates FLOWERING LOCUS T (FT) transcription and the photoperiodic flowering transcription. Transcriptomic analysis of apical buds during short days and chilling treatment revealed that the overexpression of TEML1 and TEML2 accelerate dormancy release by modulating the expression of dormancy regulators and growth-promoting genes.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70182\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70182","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Overexpression of Tempranillo-Like Proteins Promotes Dormancy Release in Poplar.
Trees in temperate and boreal latitudes synchronize their growth-dormancy cycles with seasonal environmental variations to ensure their survival over the years. Dormancy control is crucial during winter when plants cease growth and establish buds to protect their apical meristems from cold temperatures. To overcome endormancy, initiate bud break, and restore growth, plants must be exposed to a specific duration of chilling, referred to as the chilling requirement, which is species- and ecotype-dependent. In this study, we study the novel roles of two TEMPRANILLO-like genes (TEML1 and TEML2) in the annual cycle of poplar. We demonstrated that Populus TEML genes are regulated by photoperiod, cold temperatures and the circadian clock, and they are induced in buds by short days and chilling treatment. Notably, their function diverges from the role of its Arabidopsis ortholog AtTEM, which regulates FLOWERING LOCUS T (FT) transcription and the photoperiodic flowering transcription. Transcriptomic analysis of apical buds during short days and chilling treatment revealed that the overexpression of TEML1 and TEML2 accelerate dormancy release by modulating the expression of dormancy regulators and growth-promoting genes.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.