钽锌共掺杂β-TCP多孔生物陶瓷支架生物降解和骨诱导性能的体内体外评价。

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jing Luo, Zhi Li, Bowen Zhang, Bo Cheng, Jing Yang, Binbin Li, Xinyu Wang
{"title":"钽锌共掺杂β-TCP多孔生物陶瓷支架生物降解和骨诱导性能的体内体外评价。","authors":"Jing Luo, Zhi Li, Bowen Zhang, Bo Cheng, Jing Yang, Binbin Li, Xinyu Wang","doi":"10.1002/adhm.202503406","DOIUrl":null,"url":null,"abstract":"<p><p>β-Tricalcium phosphate (β-TCP) ceramics suffer from inadequate mechanical strength and uncontrolled degradation in critical bone defect repair. To address this, Tantalum/Zinc co-doped β-TCP (Ta/Zn-β-TCP) porous ceramics are developed via a novel microwave-ultrasound hydrothermal method. Physicochemical analyses confirms successful incorporation of Ta⁵⁺ (2.46 mol%) and Zn<sup>2</sup>⁺ (2.35 mol%) into the β-TCP lattice without phase alteration, inducing bidirectional lattice distortion that enhances compressive strength by 90% (10.72 ± 0.31 MPa and pure β-TCP: 5.65 ± 0.20 MPa) while maintaining optimal porosity (63.7 ± 1.2%). In vitro, Ta⁵⁺ formed a passivation layer regulating Ca<sup>2</sup>⁺ release (degradation rate: 5.96% at 28 days and 9.8% for pure β-TCP), while Zn<sup>2</sup>⁺ enriched PO<sub>4</sub> <sup>3-</sup> ions to accelerate biomimetic mineralization. The co-doped ceramic significantly upregulates osteogenic genes (Runx2: ↑180%, BMP2: ↑230%, OCN: ↑190%) in rat bone marrow mesenchymal stem cells (rBMSCs. In a rat calvarial critical-sized defect model, micro-CT and histology revealed superior bone regeneration with Ta/Zn-β-TCP (BV/TV: 45.98% at 12 weeks), outperforming pure β-TCP (22.27%) and commercial Novabone (45S5 bioglass-based) (41.67%). The material's triple synergy mechanical reinforcement, immunomodulation, and coupled angiogenesis-osteogenesis, establishes it as a promising candidate for non-load bearing bone repair.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e03406"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro and In Vivo Evaluation of Biodegradation and Osteoinductive Properties of Tantalum and Zinc Co-Doped β-TCP Porous Bioceramic Scaffolds.\",\"authors\":\"Jing Luo, Zhi Li, Bowen Zhang, Bo Cheng, Jing Yang, Binbin Li, Xinyu Wang\",\"doi\":\"10.1002/adhm.202503406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-Tricalcium phosphate (β-TCP) ceramics suffer from inadequate mechanical strength and uncontrolled degradation in critical bone defect repair. To address this, Tantalum/Zinc co-doped β-TCP (Ta/Zn-β-TCP) porous ceramics are developed via a novel microwave-ultrasound hydrothermal method. Physicochemical analyses confirms successful incorporation of Ta⁵⁺ (2.46 mol%) and Zn<sup>2</sup>⁺ (2.35 mol%) into the β-TCP lattice without phase alteration, inducing bidirectional lattice distortion that enhances compressive strength by 90% (10.72 ± 0.31 MPa and pure β-TCP: 5.65 ± 0.20 MPa) while maintaining optimal porosity (63.7 ± 1.2%). In vitro, Ta⁵⁺ formed a passivation layer regulating Ca<sup>2</sup>⁺ release (degradation rate: 5.96% at 28 days and 9.8% for pure β-TCP), while Zn<sup>2</sup>⁺ enriched PO<sub>4</sub> <sup>3-</sup> ions to accelerate biomimetic mineralization. The co-doped ceramic significantly upregulates osteogenic genes (Runx2: ↑180%, BMP2: ↑230%, OCN: ↑190%) in rat bone marrow mesenchymal stem cells (rBMSCs. In a rat calvarial critical-sized defect model, micro-CT and histology revealed superior bone regeneration with Ta/Zn-β-TCP (BV/TV: 45.98% at 12 weeks), outperforming pure β-TCP (22.27%) and commercial Novabone (45S5 bioglass-based) (41.67%). The material's triple synergy mechanical reinforcement, immunomodulation, and coupled angiogenesis-osteogenesis, establishes it as a promising candidate for non-load bearing bone repair.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e03406\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202503406\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202503406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

β-磷酸三钙(β-TCP)陶瓷在关键骨缺损修复中存在机械强度不足和降解失控的问题。为了解决这一问题,采用一种新型的微波超声水热法制备了钽/锌共掺杂β-TCP (Ta/Zn-β-TCP)多孔陶瓷。物理化学分析证实,Ta 5 + (2.46 mol%)和Zn2 + (2.35 mol%)成功结合到β-TCP晶格中,没有发生相改变,导致双向晶格畸变,抗压强度提高90%(10.72±0.31 MPa),纯β-TCP: 5.65±0.20 MPa),同时保持最佳孔隙率(63.7±1.2%)。在体外,Ta 5 +形成了一个调节Ca2 +释放的钝化层(28天降解率为5.96%,纯β-TCP为9.8%),而Zn2 +富集po43 -离子加速仿生矿化。共掺杂陶瓷显著上调大鼠骨髓间充质干细胞(rBMSCs)中的成骨基因(Runx2:↑180%,BMP2:↑230%,OCN:↑190%)。在大鼠颅骨临界尺寸缺损模型中,显微ct和组织学显示,Ta/Zn-β-TCP(12周时BV/TV: 45.98%)具有较好的骨再生能力,优于纯β-TCP(22.27%)和商用Novabone (45S5生物玻璃基)(41.67%)。该材料具有机械增强、免疫调节和血管生成-成骨耦合的三重协同作用,使其成为非负重骨修复的有希望的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Vitro and In Vivo Evaluation of Biodegradation and Osteoinductive Properties of Tantalum and Zinc Co-Doped β-TCP Porous Bioceramic Scaffolds.

β-Tricalcium phosphate (β-TCP) ceramics suffer from inadequate mechanical strength and uncontrolled degradation in critical bone defect repair. To address this, Tantalum/Zinc co-doped β-TCP (Ta/Zn-β-TCP) porous ceramics are developed via a novel microwave-ultrasound hydrothermal method. Physicochemical analyses confirms successful incorporation of Ta⁵⁺ (2.46 mol%) and Zn2⁺ (2.35 mol%) into the β-TCP lattice without phase alteration, inducing bidirectional lattice distortion that enhances compressive strength by 90% (10.72 ± 0.31 MPa and pure β-TCP: 5.65 ± 0.20 MPa) while maintaining optimal porosity (63.7 ± 1.2%). In vitro, Ta⁵⁺ formed a passivation layer regulating Ca2⁺ release (degradation rate: 5.96% at 28 days and 9.8% for pure β-TCP), while Zn2⁺ enriched PO4 3- ions to accelerate biomimetic mineralization. The co-doped ceramic significantly upregulates osteogenic genes (Runx2: ↑180%, BMP2: ↑230%, OCN: ↑190%) in rat bone marrow mesenchymal stem cells (rBMSCs. In a rat calvarial critical-sized defect model, micro-CT and histology revealed superior bone regeneration with Ta/Zn-β-TCP (BV/TV: 45.98% at 12 weeks), outperforming pure β-TCP (22.27%) and commercial Novabone (45S5 bioglass-based) (41.67%). The material's triple synergy mechanical reinforcement, immunomodulation, and coupled angiogenesis-osteogenesis, establishes it as a promising candidate for non-load bearing bone repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信