Francesca Turroni, Chiara Tarracchini, Gabriele Andrea Lugli, Laura Maria Vergna, Giulia Alessandri, Sonia Mirjam Rizzo, Massimiliano G. Bianchi, Tom Coenye, Emanuele Selleri, Ovidio Bussolati, Douwe van Sinderen, Marco Ventura
{"title":"通过自诱导剂-2的群体感应促进两歧双歧杆菌PRL2010的定植和宿主适应。","authors":"Francesca Turroni, Chiara Tarracchini, Gabriele Andrea Lugli, Laura Maria Vergna, Giulia Alessandri, Sonia Mirjam Rizzo, Massimiliano G. Bianchi, Tom Coenye, Emanuele Selleri, Ovidio Bussolati, Douwe van Sinderen, Marco Ventura","doi":"10.1111/1751-7915.70231","DOIUrl":null,"url":null,"abstract":"<p>Autoinducer-2 (AI-2) is a key signalling molecule that in many bacteria facilitates interspecies communication by regulating gene expression in response to population density through a process known as quorum sensing. While this signalling mechanism has been extensively studied in Gram-negative bacteria, its role in the genus <i>Bifidobacterium</i> remains poorly understood. In this study, an in silico analysis was conducted to examine the distribution of the <i>luxS</i> gene, which encodes the enzyme that synthesises the AI-2 precursor, across <i>Bifidobacterium</i> genomes. Our analysis revealed that <i>luxS</i> is ubiquitously present in all publicly available bifidobacterial genomes. To explore the functional implications of <i>luxS</i>, gene expression profiling was performed on the model strain <i>B. bifidum</i> PRL2010 and its isogenic <i>luxS</i> insertion mutant, both grown in a medium simulating the human gut environment. RNA sequencing results indicated that disruption of <i>luxS</i> impairs the mutant strain's ability to (i) interact and communicate with the host, (ii) transport sugars, (iii) internalise potassium and iron, and (iv) cope with stress conditions. Collectively, these findings highlight the crucial role of AI-2 in promoting colonisation and ensuring the persistence of PRL2010 within the competitive ecosystem of the human gut.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436685/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quorum Sensing via Autoinducer-2 Promotes Colonisation and Host Adaptation in B. bifidum PRL2010\",\"authors\":\"Francesca Turroni, Chiara Tarracchini, Gabriele Andrea Lugli, Laura Maria Vergna, Giulia Alessandri, Sonia Mirjam Rizzo, Massimiliano G. Bianchi, Tom Coenye, Emanuele Selleri, Ovidio Bussolati, Douwe van Sinderen, Marco Ventura\",\"doi\":\"10.1111/1751-7915.70231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autoinducer-2 (AI-2) is a key signalling molecule that in many bacteria facilitates interspecies communication by regulating gene expression in response to population density through a process known as quorum sensing. While this signalling mechanism has been extensively studied in Gram-negative bacteria, its role in the genus <i>Bifidobacterium</i> remains poorly understood. In this study, an in silico analysis was conducted to examine the distribution of the <i>luxS</i> gene, which encodes the enzyme that synthesises the AI-2 precursor, across <i>Bifidobacterium</i> genomes. Our analysis revealed that <i>luxS</i> is ubiquitously present in all publicly available bifidobacterial genomes. To explore the functional implications of <i>luxS</i>, gene expression profiling was performed on the model strain <i>B. bifidum</i> PRL2010 and its isogenic <i>luxS</i> insertion mutant, both grown in a medium simulating the human gut environment. RNA sequencing results indicated that disruption of <i>luxS</i> impairs the mutant strain's ability to (i) interact and communicate with the host, (ii) transport sugars, (iii) internalise potassium and iron, and (iv) cope with stress conditions. Collectively, these findings highlight the crucial role of AI-2 in promoting colonisation and ensuring the persistence of PRL2010 within the competitive ecosystem of the human gut.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436685/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70231\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70231","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quorum Sensing via Autoinducer-2 Promotes Colonisation and Host Adaptation in B. bifidum PRL2010
Autoinducer-2 (AI-2) is a key signalling molecule that in many bacteria facilitates interspecies communication by regulating gene expression in response to population density through a process known as quorum sensing. While this signalling mechanism has been extensively studied in Gram-negative bacteria, its role in the genus Bifidobacterium remains poorly understood. In this study, an in silico analysis was conducted to examine the distribution of the luxS gene, which encodes the enzyme that synthesises the AI-2 precursor, across Bifidobacterium genomes. Our analysis revealed that luxS is ubiquitously present in all publicly available bifidobacterial genomes. To explore the functional implications of luxS, gene expression profiling was performed on the model strain B. bifidum PRL2010 and its isogenic luxS insertion mutant, both grown in a medium simulating the human gut environment. RNA sequencing results indicated that disruption of luxS impairs the mutant strain's ability to (i) interact and communicate with the host, (ii) transport sugars, (iii) internalise potassium and iron, and (iv) cope with stress conditions. Collectively, these findings highlight the crucial role of AI-2 in promoting colonisation and ensuring the persistence of PRL2010 within the competitive ecosystem of the human gut.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes